Управляемый коммутатор что это такое


что это такое и в чем разница?

Коммутаторы – это функциональное звено домашней или рабочей сети. Для обычных пользователей непростая задача грамотно подобрать из приличного ассортимента коммутаторов устройство, которое удовлетворит по функциональности и рабочему потенциалу. Даже опытным менеджерам нужно время, чтобы проанализировать конкретную ситуацию и подобрать лучшее оборудование.

Важно сначала точно определить круг выполняемых задач коммутатором, а потом уже под это все выбирать подходящий вариант. Коммутаторы бывают разные, но все они предназначены для объединения в одном сегменте нескольких сетевых узлов, между которыми происходит постоянный обмен информацией, передача данных.

Устройства отличаются:

  • скоростью, с которой они способны передавать информацию;

  • функциональными возможностями;

  • «начинкой».

Свитч может быть также управляемым и неуправляемым. Если поставлена задача выбрать подходящее оборудование, обязательно надо разобраться в тонкостях работы и индивидуальных возможностях каждого типа.

Что такое управляемый коммутатор?

Из представленных здесь свитчей – это более сложное оборудование с расширенным функционалом и большими возможностями. Встроен микропроцессор, поэтому потенциал управляемых коммутаторов больше впечатляет:

  • реально дополнительно поработать с пакетом данных: назначать приоритет, модифицировать, передавать, преобразовывать;

  • контроль прав пользователей в сети: если проблема с MAC-адресом или IP-адресом коммутаторы легко ограничивают авторизацию пользователей;

  • могут работать, как и неуправляемый коммутатор;

  • работают на канальном и сетевом уровне;

  • коммутаторы могут делать статическую маршрутизацию;

  • несколько способов добраться к настройкам: CLI, QoS, IP, VLAN, SNMP;

  • работают с протоколами OSPF, ECMP.

Иногда клиентам не нужен такой мощный узкоспециализированный компьютер, как еще называют управляемые коммутаторы. Поэтому можно воспользоваться альтернативой – интеллектуальным коммутатором. Это что-то среднее между управляемым и неуправляемым коммутатором. Простое устройство считается полууправляемым, настраиваемым, в оснастке – базовый функционал. Конечно, с полноценным управляемым оборудованием оно не сравнится, но отлично подходит для организации надежных и легкоуправляемых малых и средних локальных сетей. При ограниченном бюджете – это лучшее решение, особенно, если весь предлагаемый функционал управляемого коммутатора не востребован.

От уровня свитча зависит, какой функционал он способен предложить клиенту. Устройства второго уровня функционируют на канальном уровне модели OSI, третьего уровня, как маршрутизаторы, работают на сетевом уровне. У управляемого коммутатора может быть такая функция, которая подпитывает электроэнергией малогабаритные устройства, помимо того, что он выполняет свои прямые обязанности: соединяет рабочие станции для передачи данных, создавая надежную и качественную сеть.

Что такое неуправляемый коммутатор?

Функционально неуправляемые коммутаторы могут самостоятельно передавать информацию непосредственно получателю. Пакеты данных не уходят всем подряд за счет того, что в памяти коммутаторов сохранена таблица MAC-адресов. Следовательно, устройство не перепутает и точно знает, какой машине, какой соответствует порт.

Из всего ассортимента коммутаторов именно неуправляемые коммутаторы считаются наиболее простыми:

  • отлично организовывают небольшие сети дома или в офисе без привлечения IT-специалистов;

  • коммутаторам не требуется точная настройка профессионалов;

  • оснащенные по минимуму полезными функциями, неуправляемые коммутаторы успешно и эффективно обеспечивают основные сетевые соединения;

  • после простых действий оборудование готово к работе: подключение к электроэнергии и подсоединение рабочих станций через порты.

Управляемым коммутаторам и неуправляемым свойственен и общий функционал: в одну сеть объединяют рабочие устройства. Разница между ними вот в чем:

  • количество машин;

  • настройка сети и рабочих машин;

  • возможность управлять функционирующей сетью.

Неуправляемый свитч, размещая дома или на производстве, в офисе, рассматривают настольный вариант, хотя часто устройства устанавливают в специальные стойки. В каждом конкретном случае выбирают более подходящее решение. Можно еще рассматривать и вертикальное крепление небольшого неуправляемого коммутатора.

Преимущества устройств:

  • бюджетная цена;

  • экономное потребление энергоресурсов, поэтому они выгодные;

  • простота в эксплуатации;

  • отказоустойчивость коммутаторов на высоком уровне;

  • отличная надежность;

  • некоторые коммутаторы оснащены особыми портами «uplink». Благодаря этому их можно соединить с устройством, которое находится выше в сетевой иерархии.

Для обеспечения всем необходимым малых сетей вполне достаточно возможностей, которые предложит неуправляемый коммутатор, который может работать в среднескоростном и высокоскоростном режиме в зависимости от модификации. Так еще и удастся сэкономить на покупке управляемого коммутатора, так как в этом не будет необходимости.

Сходства между управляемым и неуправляемым коммутатором

Выделяют следующие сходства между сетевыми устройствами:

  • друг с другом могут взаимодействовать несколько рабочих станций, когда подключены к сети – это обеспечивает, как коммутатор управляемый, так и неуправляемый;

  • посредством Ethernet между собой подключают неуправляемые коммутаторы. К коммутаторам любого типа подключают управляемые устройства.

Разница между управляемым и неуправляемым коммутатором

Отличия между этими устройствами сосредоточены в таких нюансах:

  • производительности;

  • особенностях;

  • безопасности;

  • эксплуатации;

  • бюджете.

Коммутаторы, которыми можно управлять, поддерживают настройку, трафик и доступ контролируется, можно удаленно ликвидировать проблемы с сетью. А неуправляемый коммутатор представлен с ограниченной конфигурацией.

Разница между управляемым и неуправляемым коммутатором и в особенностях. Первые поддерживают динамический контроль, можно выполнить резервирование, зеркалирование портов. У вторых конфигурация строго фиксированная. Поддержка любого интерфейса невозможна, как и параметров конфигурации.

Такие коммутаторы, как управляемые, славятся отменной безопасностью: защита данных, управления. Неуправляемые устройства не могут похвастаться высоким уровнем безопасности. Единственное, что есть – запираемый порт.

Управляемые коммутаторы нужны для организации крупных корпоративных сетей, поэтому стоят дороже. Неуправляемым коммутаторам свойственно построение небольших домашних и корпоративных сетей.

 

galtsystems.com

Управляемый Коммутатор или Неуправляемый Коммутатор: Как Выбрать?

Главное меню

Ethernet Коммутаторы

Главное меню

PoE+ Коммутаторы

Главное меню

PDU, UPS, Система Питания

Главное меню

Сетевые Адаптеры, Серверы

Главное меню

Маршрутизаторы

Главное меню

Безопасность

Главное меню

Конвертеры & Удлинители, KVM, TAP

Главное меню

Беспроводная связь

Главное меню

Видеоконференция

community.fs.com

Для чего нужен управляемый коммутатор

Принцип работы компьютерных сетей заключается в соединении различных устройств (персональных компьютеров, периферийных приборов) в единую систему с помощью всего двух компонентов оборудования: маршрутизаторов и коммутаторов. Благодаря таким устройствам, все элементы сети могут взаимодействовать друг с другом, а также с другими сетями. Внешне коммутаторы и маршрутизаторы выглядят схоже, однако они выполняют различные функции. В этой статье мы сделаем акцент на первых устройствах, а именно на таком отдельном их виде, как управляемый коммутатор. Итак, что это за приборы?

Назначение и типы коммутаторов

Эти устройства используют для создания сетей в рамках одного здания или конкретной территории. Коммутаторы соединяют персональные компьютеры, серверы, принтеры, сканеры, тем самым создавая сеть общего ресурса. Такие устройства могут работать в качестве контроллеров, то есть позволять различным элементам предоставлять доступ к информации, а также взаимодействовать с другими участниками. Благодаря предоставлению такого доступа к данным и распределению всех ресурсов, коммутаторы повышают производительность всей сети.

Существует два типа таких устройств: управляемые и неуправляемые. Последние работают по стандартной схеме. Пользователь не может внести в неё изменения. В домашних сетях принято использовать именно этот тип. Управляемый коммутатор открывает доступ для программирования. Благодаря этому качеству, обеспечивается высокая гибкость системы. Это связано с тем, что управляемый коммутатор можно настраивать и контролировать удаленно или локально для управления трафиком по сети и доступом к ней. Рассмотрим более детально этот тип устройств.

Коммутатор управляемый: технические особенности

Такие устройства способны поддерживать множество различных функций для внесения изменений в настройки прибора.

Оператор может подключить к аппарату один консольный шнур и использовать функцию CLI для конфигурации работы устройства. Кроме того, управление прибором можно осуществлять через SNMP, Telnet, SSL и SSH. Управляемый коммутатор способен поддерживать расширенные функции (RSTP, MSTP, STP), если в сети (между устройствами и компьютерами) существует два и более маршрутов. Если пользователю необходимо усилить уровень безопасности сети, то можно настроить специальную функцию 802.1 X, ACL. Коммутатор управляемого типа, в зависимости от поставленной задачи, способен поддерживать несколько VLAN. Такие устройства могут обеспечить высокую надежность и стабильность компьютерных сетей.

Заключение

Развитие сетевого оборудования не стоит на месте. В этой отрасли постоянно появляются новые устройства. Некоторые из них предназначены для создания компьютерных сетей с использованием медных кабелей, а другие - для сетей на базе оптоволоконных технологий. Точно так же очень быстро развиваются и рассмотренные нами устройства. Так, например, можно увидеть компьютерные сети, которые контролирует управляемый коммутатор 2 уровня или даже 3 уровня. Популярность такого оборудования объясняется повсеместной компьютеризацией, ведь сейчас объединяются в единую систему и телефония, и телевидение, и интернет, и даже банковские сети.

fb.ru

Как выбрать коммутатор — советы на Яндекс.Маркете

Необходимо рассчитать, какой объем трафика будет передаваться по сети. Например, если требуется регулярно производить резервное копирование нескольких десятков или даже сотен гигабайт информации с нескольких компьютеров, будет разумно приобрести коммутатор с портами 1000 Мбит/с (Gigabit Ethernet). Для малых объемов трафика будет достаточно 100-мегабитного коммутатора (Fast Ethernet).

Кроме того, необходимо учитывать, какую скорость поддерживают сетевые адаптеры компьютеров и других устройств в сети. Если подавляющее большинство устройств оснащено сетевыми адаптерами Fast Ethernet 100 Мбит/с, то покупать гигабитный коммутатор не имеет смысла. Однако следует отметить, что все современные материнские платы компьютеров оснащаются интерфейсом Gigabit Ethernet.

Внутренняя пропускная способность коммутатора показывает, какой объем трафика коммутатор сможет обрабатывать в периоды пиковой нагрузки на все порты. Данную характеристику не следует путать с суммарной пропускной способностью всех портов в дуплексном режиме. Внутренняя пропускная способность может быть меньше, особенно у коммутаторов с большим количеством портов.

Например, у 16-портового коммутатора Fast Ethernet суммарная пропускная способность портов в дуплексном режиме составляет: 16 (количество портов) x 100 Мбит/с x 2 (дуплекс) = 3,2 Гбит/с. Если внутренняя пропускная способность коммутатора меньше 3,2 Гбит/с, то он будет плохо справляться с пиковыми нагрузками и может зависать.

Некоторые модели коммутаторов имеют один или несколько слотов расширения для установки модулей с дополнительными интерфейсами. Такие модули приобретаются отдельно. Это могут быть, например, модули Gigabit Ethernet, использующие витую пару или волоконно-оптический кабель.

Если коммутатор будет использоваться в сети, где ключевое значение имеет, например, передача потокового видео с камер наблюдения, то наличие функции приоритезации трафика (Priority tags) крайне желательно. Это позволит присвоить пакетам потокового видео самый высокий приоритет, и коммутатор будет обрабатывать и передавать такие пакеты в первую очередь, благодаря чему прямая трансляция видео будет происходить без задержек и разрывов.

market.yandex.ru

Новости и аналитика телекоммуникаций. Фиксированная и мобильная связь, провайдеры интернет. Nag.Ru

Конкурс, запущенный компанией НАГ 28 февраля, продолжается. И мы публикуем новые фото оборудования из продуктовой линейки компании, которое нашли на просторах сети интернет по хэштегу #нагвокругнас. 24.03.2020

В конце февраля мы запустили фотоконкурс "НАГ вокруг НАС", где предлагает всем неравнодушным выкладывать в социальных сетях фотографии оборудования под нашими брендами. Очередные работы, которые мы отыскали в социальных сетях с хэштегом #нагвокруг нас, публикуем сегодня. 16.03.2020

А знаете ли вы, сколько оборудования, произведенного под брендами компании НАГ, окружает нас, работает для нашего с вами комфорта, оставаясь при этом, зачастую, практически незаметным? Давайте оглянемся вокруг, вытащим камеру или смартфон, сделаем снимок и получим возможность выиграть интересный приз. :) 25.02.2020

30 января в московском выставочном центре “Крокус Экспо” завершилась 22-я международная выставка-форум CSTB.Telecom&Media’2020, ставшая традиционной точкой, где могли встретиться поставщики и потребители оборудования и сервисов в области телевидения, эксплуатанты оборудования и разработчики. Компания НАГ традиционно принимала в ней участие. 17.02.2020


Конференция российских операторов связи – традиционное весеннее мероприятие НАГ – пройдёт в 2020 году в пятнадцатый раз. 19.12.2019

Мы посчитали голоса, отданные вами за каждую работу, затем подключили наших технических специалистов и дизайнеров, и определили победителей. Итак, в нашем конкурсе одержали победу (и получат подарки) нижеследующие участники. :) 19.12.2019

Заходим, смотрим, голосуем, берём пример с лучших! Оцениваем мастерство работы наших коллег из сферы телекома. 12.12.2019

Конференция российских операторов связи КРОС проводится ежегодно с 2006 года, и в следующем мае станет пятнадцатой по счёту. 10.12.2019

Вторая серия фотографий, поступивших на конкурс "Делай правильно, снимай красиво". Заходим, голосуем, комментируем. 06.12.2019

Месяц назад мы запустили конкурс фотографий телекоммуникационного оборудования "Делай правильно, снимай красиво". Пришло время смотреть первые работы, подводить промежуточные итоги и голосовать за самые красивые фотки. Заходим, смотрим, голосуем! 05.12.2019

Очередной успешный кейс с применением контроллеров ERD-4 реализовала компания “МВС Груп”, занимающаяся решениями безопасности дорожного движения. Контроллеры ERD-4 были применены в климатических термошкафах, используемых в рамках программы “Безопасный регион” по всей Московской области. 02.12.2019

Задача обеспечить оперативную связь с сотрудниками существует во многих компаниях, особенно расположенных на большой территории, в зоне неуверенного приёма сотовой связи. Создать на предприятии собственную систему мобильной связи поможет микросотовая система Yealink W80B. В ближайшее время НАГ, первым и единственным в УрФО получит право на тестирование Yealink W80B. В январе новое оборудование поступит в продажу. 22.11.2019

Оператор связи “Планета” (ITM Холдинг), начавший одним из первых подключать абонентам интернет на скорости до 1 Гбит/с, представляет новый маршрутизатор для “Оптического Гигабита” – SNR-CPE-ME2-SFP. Устройство, разработанное компанией “НАГ”, прошло полноценное тестирование в качестве базового маршрутизатора для гигабитных скоростей на сетях оператора “Планета”. Оптимальна и цена устройства. 20.11.2019

Каким должен быть телекоммуникационный ящик? Всегда думал, что разбираюсь в них. Оказывается - я ошибался. Оказывается - в ящиках я не разбираюсь совсем. Простому наемному работнику всегда давали то, что было, и с этим он и работал. 11.11.2019

Читать все блоги

nag.ru

Промышленные неуправляемые коммутаторы Advantech серии EKI-2000 / Advantech IIoT corporate blog / Habr

При построении сетей Ethernet используются различные классы коммутирующего оборудования. Отдельно стоит выделить неуправляемые коммутаторы – простые устройства, позволяющие быстро и эффективно организовать работу небольшой Ethernet-сети. В данной статье приводится подробный обзор неуправляемых промышленных коммутаторов начального уровня серии EKI-2000.

Введение


Ethernet уже давно стал неотъемлемой частью любой промышленной сети. Этот стандарт, который пришёл из IT-индустрии, позволил перейти на качественно новый уровень организации сети. Увеличились скорости, повысилась надёжность, появилась возможность централизованного управления сетевой инфраструктурой. Не заставили себя долго ждать и создатели протоколов передачи данных. Практически все основные промышленные протоколы, такие как Modbus TCP, EtherNet/IP, IEC 60870-5-104, PROFINET, DNP3 и т.д., используют в качестве основы идентичную или приближённую модель OSI. Полезные данные (payload) помещаются во фрейм и передаются по Ethernet-сети. Почти каждый современный контроллер, интеллектуальный датчик или панель оператора оснащены Ethernet-интерфейсом для возможности подключения в одноимённую сеть. Это означает, что теоретически для промышленной сети можно применить стандартные Ethernet-устройства, которые можно найти в корпоративной, офисной и даже домашней сети. Однако на практике уже давно сформировался большой класс устройств, который предназначен для работы именно с сетями типа Industrial Ethernet. В него входят сетевые устройства, адаптированные для работы именно в промышленной среде, обеспечивающие надёжность, минимальные уровни задержек, а также соответствующие различным промышленным стандартам, которые предъяв­ляет та или иная отрасль. При этом основной «боевой» единицей, как правило, выступает промышленный Ethernet-коммутатор. Это связано с тем, что коммутатор – устройство, которое позволяет осуществить надёжное и, главное, быстрое взаимодействие между компонентами и узлами промышленной сети.

Коммутатор – оптимальное решение для промышленной сети


Промышленный коммутатор, или свитч (switch) является основным устройством, которое используется для построения промышленной сети. Почему именно коммутатор? Ведь есть и другие сетевые устройства, например концентратор (хаб, hub) или маршрутизатор (роутер, router). Всё связано с быстродействием и функциональностью. Самым быстродействующим устройством из перечисленных является концентратор, какое-то время назад этот тип устройств был очень популярен из-за невысокой цены. Фактически концентратор – это многопортовый повторитель, он работает на физическом уровне согласно сетевой модели OSI и ретранслирует полученные данные на все подключённые порты.

С одной стороны, такая схема позволяет обеспечить минимальные задержки в сети, но с другой стороны, возрастает нагрузка на сеть, так как трансляция при такой реализации получается широковещательной. Это зачастую приводило к резкому падению производительности сети. Маршрутизатор, в свою очередь, – устройство, которое работает на сетевом уровне согласно модели OSI и обладает очень богатой функциональностью, позволяющей обеспечить построение маршрутов передачи трафика. Подобная функциональность требует более высокой производительности устройства, так как происходит анализ информационного пакета, начиная от заголовка 3-го уровня модели OSI и выше. В итоге задержки становятся больше, так как реализация на маршрутизаторах в большинстве случает программная, цена, естественно, выше, да и подобная функциональность востребована на уровне ядра сети.

В итоге наибольшее распространение в промышленных Ethernet-сетях получили именно коммутаторы, при этом разного уровня и функциональности. Коммутатор представляет собой более интеллектуальное устройство, чем концентратор, и более быстрое, чем маршрутизатор, так как функционирует на канальном уровне согласно модели OSI. Трафик чётко распределяется и направляется сразу к адресату, что исключает лишнюю нагрузку на сетевое оборудование, позволяя другим сегментам не обрабатывать данные, которые предназначены не им. Это обеспечивается за счёт анализа MAC-адресов отправителей и адресатов, которые содержатся в каждом передаваемом фрейме данных. Такая коммутация позволяет достичь минимальных задержек при распределении трафика, сохраняя приемлемый уровень цены.

В своей памяти коммутатор содержит таблицу (CAM-table), где указывается соответствие MAC-адреса узла и физического порта коммутатора, что как раз и обеспечивает снижение нагрузки на сеть, так как коммутатор точно знает, на какой порт пересылать пакет данных. Однако стоит учитывать, что когда коммутатор включают либо перезагружают, он работает в обучающем режиме, так как таблица соответствия пуста. В таком режиме данные, которые приходят на коммутатор, рассылаются на все остальные порты, а коммутатор проводит анализ и заносит в таблицу MAC-адрес отправителя. Со временем трафик локализуется, так как коммутатор составляет полную таблицу соответствия MAC-адресов всех портов.

Сейчас многие производители сетевого оборудования для промышленных сетей предлагают именно коммутаторы как устройства для обеспечения взаимодействия между узлами сети. В портфолио имеются коммутаторы различной функциональности, как правило, выделяют неуправляемые, управляемые и коммутаторы уровня L3. И если L3-коммутаторы применяются как альтернатива маршрутизаторам на уровне ядра сети и с их выбором связаны только узкоспециализированные вопросы, то выбор между управляемым и неуправляемым коммутатором сводится к правильному определению задач, которые должно решать сетевое устройство. Далее рассмотрим базовые различия между управляемыми и неуправляемыми коммутаторами.

Управляемый и неуправляемый коммутаторы


Управляемый и неуправляемый коммутаторы – это фактически два разных устройства, которые функционируют на уровне L2 модели OSI. Неуправляемый коммутатор предназначен для автоматического равномерного распределения скорости и передаваемого трафика по всем участникам сети. Это оптимальное решение для сетей с небольшим количеством оконечных устройств, из преимуществ можно выделить:
  • обеспечение высокой пропускной способности Ethernet-сети;
  • небольшое время отклика;
  • простота управления;
  • наличие дополнительной функциональности по управлению потоком данных.

Управляемый коммутатор имеет более высокую стоимость, применяется для крупных сетей и имеет возможность полного управления передаваемым трафиком, скоростью, а также обладает дополнительными возможностями управления. Фактически это оптимальное решение для участков сети, где необходима дополнительная функциональность по сегментированию, резервированию, информационной защите и т.п. В отличие от неуправляемого коммутатора управляемый необходимо конфигурировать путём задания ряда дополнительных и обязательных настроек.

Неуправляемые коммутаторы – это устройства типа Plug and Play, не требующие сложной настройки и глубоких знаний. Они позволяют быстро организовать обмен между оборудованием в Ether­net-сети без дополнительных настроек. Эти коммутаторы позволяют Ethernet-устройствам взаимодействовать друг с другом (например, ПЛК и HMI), обеспечивая соединение с сетью и передавая информацию адресату от отправителя. Они поставляются с фиксированной конфигурацией и не допускают никаких изменений в настройках, поэтому нет необходимости расставлять приоритеты фреймов и осуществлять дополнительную настройку.

Неуправляемые коммутаторы в основном используются для подключения периферийных устройств к сетевым ответвлениям или в небольшой автономной сети с несколькими компонентами. В промышленных условиях необходимо использовать коммутаторы, адаптированные для конкретных нужд.

Промышленные коммутаторы разрабатываются для различных отраслевых применений, таких как электроэнергетика, нефтегазовая сфера, железнодорожный транспорт и инфраструктура и т.д. Они специально разработаны для эксплуатации в расширенном диапазоне температур, в условиях вибраций и ударов и способствуют созданию экономически эффективной и надёжной защищённой сети.

Коммутаторы Advantech серии EKI-2000



Промышленные коммутаторы Advantech серии EKI-2000 являются устройствами начального уровня и предназначены для быстрой организации взаимодействия устройств посредством создания Ethernet-сети. В настоящий момент в серию EKI-2000 включены более 25 уст­ройств, в таблице ниже приведена расшифровка номера для заказа.

При этом коммутаторы могут быть оснащены как портами типа RJ-45, так и оптическими портами для передачи данных по одномодовому и многомодовому оптоволокну, максимальная скорость при этом может достигать 1 Гбит/с.

Функциональность коммутаторов серии EKI-2000


Функциональность неуправляемых коммутаторов, как правило, не является чем-то экстраординарным. Однако давайте разберёмся, какие функции всё-таки находятся на вооружении коммутаторов Advantech серии EKI-2000.

Автоматическое определение типа соединения MDI/MDI-X


Эта функция позволяет подключать к коммутаторам любые типы Ethernet-устройств, не думая о типе кабеля: «прямой» (straight) он или перекрёстный (crossover).

Обычно для соединения сетевого адаптера с сетевым оборудованием уровня L2 (концентратором или коммутатором) используется «прямой» кабель. Для соединения двух идентичных сетевых устройств между собой или, например, сетевого адаптера с маршрутизатором, предписано использовать перекрёстный кабель. Наличие функции MDI/MDI-X позволяет использовать любой тип кабеля совместно с коммутатором.

Автоматическое определение типа сети (Auto-Negotiation)


Данная функция вслед за MDI/MDI-X относится к Plug and Play и позволяет автоматически определить тип сети и скорость передачи, предусмотренную стандартом Ethernet. На практике это особенно важно, так как в существующей сети может применяться оборудование с различными скоростными характеристиками, от 10 Мбит/с до 1 Гбит/c. Auto-Negotiation позволяет существенно облегчить жизнь пользователям сети. Устройство само «договорится» о скорости с граничным «Ethernet-соседом».

Защита от широковещательного шторма


Защита от широковещательного штор­­ма является также очень полезной функцией для коммутаторов. Широковещательный шторм, как правило, вызывается «петлями» в локальной сети либо неправильным поведением одного из участников сети. В таких случаях сеть будет заполнена большим количеством бесполезных фреймов, что отразится на её скорости.

Функция защиты от широковещательного шторма на коммутаторе автоматически отфильтровывает широковещательные фреймы. И когда широковещательный трафик превышает определённый порог, сеть по-прежнему остаётся работоспособной, так как коммутатор автоматически резервирует полосу пропускания для передачи обычных фреймов.

Функция защиты от широковещательного шторма на неуправляемых коммутаторах EKI-2000 включена по умолчанию. Подробную информацию о пороговых значениях для каждой модели необходимо уточнять на официальном сайте производителя.

P-Fail реле


Начнём с того, что большинство моделей серии EKI-2000 рассчитаны на диапазон входного напряжения питания 12…48 В постоянного тока. Вход дублирован и обладает защитой от переполюсовки, а также от перегрузки по току посредством самовосстанавливающегося предохранителя. На входе стоит компаратор напряжения, и при подаче напряжения на оба входа компаратор автоматически выбирает более высокое значение и делает данный вход основным. При пропадании напряжения на одном из входов либо при просадке его уровня ниже 12 В коммутатор автоматически переходит на второй канал и замыкает P-Fail реле. Данная функция позволяет контролировать состояние питающей сети коммутаторов и оперативно сигнализировать о нештатной работе.

Светодиодная индикация


Эта функция позволяет обеспечить оценку состояния коммутатора при его визуальном осмотре. Каждый порт передачи данных коммутатора серии EKI-2000 имеет два светодиода для отображения скорости передачи, статуса соединения и статуса возможной коллизии. Также имеются светодиоды, дублирующие P-Fail реле, которые одновременно срабатывают при обрыве одной из цепей питания.

PoE (Power-over-Ethernet)


На ряде неуправляемых коммутаторов серии EKI-2000 реализована функция Power-over-Ethernet. Она позволяет обеспечить питание удалённых устройств по стандарту IEEE 802.3af и IEEE 802.3at (PoE+), где в качестве питающей линии используется передающая линия на базе витой пары категории 5e и выше. В качестве питающей сети для данных коммутаторов рекомендуется использовать номинальное значение 53…57 В постоянного тока, чтобы исключить падение напряжения на линии.

Встроенная защита от электромагнитных помех и электростатических разрядов


Коммутаторы серии EKI-2000 имеют встроенную систему фильтрации для защиты от электромагнитных помех и от статического напряжения. По линии питания коммутатор может обеспечить работоспособность при кратковременных импульсных помехах с амплитудой до 3000 В постоянного тока, а также при электростатических разрядах на портах RJ-45 до 4000 В.

Конструктив


Абсолютно все коммутаторы серии EKI-2000 обладают прочным металлическим корпусом со степенью защиты IP30. Конструктивно серия EKI-2000 может быть выполнена в двух вариантах, это либо исполнение для монтажа на DIN-рейку, либо для монтажа в 19ʺ стойку. Всё необходимое крепление идёт в комплекте. Также коммутаторы, которые предназначены для крепления на DIN-рейку, можно смонтировать на панель, крепление поставляется в комплекте.

Заключение


Промышленные неуправляемые коммутаторы – это устройства, адаптированные для работы именно в промышленной среде. Они обеспечивают надёжное и быстрое взаимодействие между Ethernet-узлами, при этом не требуют дополнительных настроек и конфигурирования. На данный момент неуправляемый коммутатор – простое бюджетное сетевое устройство, способное решить достаточно большое количество базовых задач, связанных с организацией обмена по Ethernet-сети. Настройка при этом не требуется, достаточно просто вынуть коммутатор из коробки и подключить все необходимые коннекторы.

Серия неуправляемых коммутаторов Advantech EKI-2000, относящаяся к описанному классу устройств, поддерживает широкий перечень важных и нужных функций, таких как автоматическое определение типа соединения MDI/MDI-X, автоматическое определение типа сети (Auto-Negotiation), защита от широковещательного шторма, PoE, защита от электромагнитных помех и электростатических разрядов и т.д. В совокупности все эти функции позволяют использовать EKI-2000 для решения базовых задач по организации взаимодействия между сетевыми и оконечными узлами.

Пример применения



Одним из клиентов Advantech является Китайская национальная нефтегазовая корпорация (CNPC). Чтобы расширить возможности передачи данных при одновременном снижении связанных с этим затрат, CNPC выбрала решение Advantech для мониторинга и управления месторождением нефти. Данные передаются через сотовую сеть с месторождения в центр управления. Маршрутизаторы BB-SL306 были установлены с коммутаторами EKI-2525I в шкафах рядом с насосными отсеками, обеспечивая сетевое подключение для полевого оборудования, такого как камеры, ПЛК, RTU и другие устройства.

Литература


1. An Introduction to Industrial Ethernet
2. 10 Questions to Ask Before Selecting an Ethernet Switch
3. EKI-2525 5-port 10/100Base-TX Industrial Unmanaged Ethernet Switch. EKI-2528 8-port 10/100Base-TX Industrial Unmanaged Ether­net Switch: User Manual

Автор – сотрудник фирмы ПРОСОФТ

habr.com

Выбор сетевых коммутаторов для видеонаблюдения

Эволюция сетевых технологий в последние годы привела к новому устойчивому тренду в развитии систем видеонаблюдения. Из системы телевидения замкнутого контура (Сlosed Circuit Television, CCTV) видеонаблюдение все больше смещается в сторону одной из IT систем собственника. С теми же принципами передачи, обработки и хранения информации, а зачастую и с той же средой передачи данных локальной вычислительной сети (ЛВС) заказчика.

Данный тренд имеет множество положительных моментов для отрасли безопасности - унификация и, как следствие, удешевление оборудования при возрастающем функционале и технических характеристиках; высокая, ранее не достижимая степень интеграции между различными системами технической безопасности и IT системами заказчика; огромные возможности по резервированию центрального оборудования, систем хранения данных и систем передачи данных; автоматизация работы оператора системы видеонаблюдения и массовое внедрение видеоаналитических модулей и машинного зрения.

Но не стоит забывать и связанные с этим проблемы - необходимость обеспечить приоритетность в передаче данных от систем безопасности при разделении среды передачи, необходимость обеспечения информационной безопасности, а также учет нагрузки при планировании локальных вычислительной сетей.

В данной статье обсудим основные подходы к подбору сетевых коммутаторов для систем видеонаблюдения на примере оборудования ЗАО НВП “Болид”.

Коммутаторы - сердце IP системы видеонаблюдения

В системах IP видеонаблюдения сетевые коммутаторы можно сравнить с сердцем, где в роли крови выступают данные, генерируемые IP камерами. Для того, чтобы система “не болела” и данные системы видеонаблюдения гарантировано доставлялись потребителям - в мониторинговый центр и центр хранения данных - необходимо правильно спланировать ЛВС объекта и правильно настроить и сконфигурировать сетевые коммутаторы.

Принципы подбора оборудования

Первый, и, пожалуй, самый ответственный этап - подбор оборудования под конкретную задачу заказчика. Как правило, требуется подобрать минимально достаточное решение с учетом планов заказчика на дальнейшее расширение системы.

Попробуем разобраться с базовыми принципами выбора сетевых коммутаторов для видеонаблюдения.

Управляемые или неуправляемые?

Для грамотного ответа на данный вопрос придется немного погрузиться в то, как устроен процесс передачи данных в сетях связи. Проще всего для этого воспользоваться стандартной базовой эталонной моделью взаимодействия открытых систем OSI (open systems interconnection basic reference model).

Всего в модели OSI 7 уровней. Но на практике нам интересны лишь два из них: второй канальный (layer 2 data link или L2) и третий сетевой (layer 3 network или L3).

Сетевой коммутатор работает либо на 2 уровне, либо на 2 и 3 уровне по модели OSI. Разберемся, что это означает. Канальный уровень предназначен для обмена данными между узлами, находящимися в том же сегменте локальной сети. Сетевой уровень предполагает взаимодействие между разными сегментами локальной сети. Однако для систем видеонаблюдения, которые как правило физически отделены от локальных вычислительных сетей предприятия, 3 уровень модели OSI используется достаточно редко. Поэтому, несмотря на то, что управляемые коммутаторы могут поддерживать как 2 и 3 уровень модели OSI (L3) так и только 2 (L2), для систем видеонаблюдения используются коммутаторы второго уровня L2.

Теперь можно определить, чем отличаются управляемые коммутаторы от неуправляемых. Неуправляемый коммутатор – это устройство, самостоятельно передающее пакеты данных с одного порта на остальные. Но не всем устройствам подряд, а только непосредственно получателю, так как в коммутаторе есть таблица MAC-адресов. Благодаря данной таблице коммутатор "помнит", на каком порту находится какое устройство. Неуправляемый коммутатор с оптическими портами может являться альтернативой медиаконвертера с ограниченным количеством портов, например, когда необходимо конвертировать оптику и передавать пакеты данных далее сразу на несколько портов/устройств. Стоит отметить, что в данном типе коммутаторов нет web-интерфейса, именно поэтому они и называются неуправляемыми.

Самый очевидный пример использования неуправляемых коммутаторов – объединение видеорегистраторов, серверов, видеокамер, рабочих станций оператора в одну сеть.

Управляемый коммутатор – более сложное устройство, которое может работать как неуправляемый, но при этом имеет расширенный набор функций, и поддерживает протоколы сетевого управления благодаря наличию микропроцессора (по сути управляемый свитч – это узкоспециализированный компьютер). Доступ к настройкам данного типа устройства осуществляется, как правило, через WEB-интерфейс. Одно из основных преимуществ управляемого коммутатора – возможность разделения локальной сети с помощью виртуальной локальной сети (VLAN). Это необходимо если по каким-либо причинам невозможно выделить локальную сеть видеонаблюдения из общей локальной сети предприятия физически.

Управляемые коммутаторы позволяют задавать приоритет определенному трафику через механизм назначения уровней качества - QoS (quality of service).

Еще одно отличие управляемого коммутатора – протоколы резервирования, которые позволяют создавать сложные топологии, например физические кольца. При этом логическое подключение все равно остается шинным.

Таким образом, все коммутаторы можно разделить на 3 категории:

ВозможностиНеуправляемые коммутаторыУправляемые коммутаторы
Уровня 2 OSI (L2)Уровня 3 OSI (L3)
Равноправная работа в рамках одной подсетидадада
Приоритезация трафика в рамках одной подсетинетдада
Передача данных между разными подсетяминетнетда
Форм фактор - Rack mount (стоечное исполнение) или DIN Rail mounts (промышленное исполнение)?

Выбор форм-фактора зависит от места установки коммутатора. Как правило, внутри здания коммутаторы устанавливаются в серверных/кроссовых. Для этого используются специальные серверные стойки либо настенные 19” шкафы. В этом случае необходимо использовать подходящий для стоек форм фактор - Rack mount.

Если требуется установить коммутатор вне здания в термошкафу - требуется компактный размер, промышленное исполнение и крепление на Din-рейку. Поэтому единственный правильный выбор - DIN Rail mounts.

Стандартный коммутатор в 19” стойкуКоммутатор промышленного исполнения на Din-рейку
SW-216SW-224SW-104SW-108SW-204
“Витая пара” или “оптика”?

Это зависит от расстояния между камерой, коммутатором и сервером. Расстояние от точки терминирования “витой пары” (кабеля UTP / FTP категории 5 либо выше) в горизонтальном кроссе телекоммуникационной (рядом с сервером / регистратором) до точки терминирования в телекоммуникационной розетке (рядом с камерой видеонаблюдения) не должно превышать 90 метров (п. 5.2.1 ГОСТ Р 53246-2008 Системы кабельные структурированные).

Это не означает, что при больших расстояниях камера не сможет передать видео. Технология передачи Fast Ethernet 100BASE-TX предполагают работу на скорости до 100 Мб/с. Очевидно, что битрейт с камер меньше и следовательно длину сегмента можно увеличить. Но влияют множество факторов на конкретном объекте. Стандарты - они прежде всего для планирования сетей, для унификации. Если сертифицировать сеть на соответствие требованиям стандартов СКС (что может потребовать заказчик), то нужно соблюдать ограничения, прописанные в ГОСТ Р 53246-2008, ГОСТ Р 53245-2008 и международных ISO/IEC.

Поэтому, как правило, медная витая пара используется при расстояниях до 90 метров от камеры до коммутатора, оптоволоконный кабель - при превышении 90 метров.

МодельЧисло портов 10/100 Base-T c PoE (“медь”)Число Up-link портов 10/100/1000 Base-T (“медь”)Число Up-link портов 100/1000 Base-X (“оптика”)Типы SFP модулей для “оптических” портов
SW-104411155 Мб/с 850 нм, 2 км, LC, многомодовое волокно1,25 Гб/с 850 нм, 500 м, LC, многомодовое волокно155 Мб/с 1310 / 1550 нм, 20 км, LC, одномодовое волокно155 Мб/с 1550 / 1310 нм, 20 км, LC, одномодовое волокно1,25 Гб/с 1310 / 1550 нм, 20 км, LC, одномодовое волокно1,25 Гб/с 1550 / 1310 нм, 20 км, LC, одномодовое волокно
SW-108811
SW-2043121,25 Гб/с 850nm, 500 м, LC, многомодовое волокно1,25 Гб/с 1310 / 1550 нм, 20 км, LC, одномодовое волокно1,25 Гб/с 1550 / 1310 нм, 20 км, LC, одномодовое волокно
SW-2161620-
SW-2242420-
Топология сети - “звезда” или “кольцо”?

Почти всегда топология построения локальной вычислительной сети (ЛВС) для систем видеонаблюдения строится по топологии типа “звезда”. Для крупных систем идет разделение: на коммутаторы уровня доступа, к которым подключаются камеры видеонаблюдения, и на коммутатор уровня ядра сети, к которому подключаются коммутаторы уровня доступа, видеосервера, рабочие станции поста охраны. Для небольших ЛВС один коммутатор может совмещать уровень доступа и уровень ядра.

Однако бывают случаи, когда стандартная топология не является идеальной. Это относится в первую очередь к периметральным системам охранного телевидения, где очевидны преимущества кольцевой топологии: более равномерная нагрузка на каналы связи, автоматическое восстановление сети после единичного обрыва.

Коммутатор BOLID SW-204 с двумя гигабитными оптическими портами 100/1000 Base-X поддерживает стандартный протокол RSTP (Rapid spanning tree protocol) и кольцевую топологию с функционалом резервирования связи Fast Ring Network для построения локальных вычислительных сетей периметральных систем видеонаблюдения (см. рис.1).

Рисунок 1. Сравнение кольцевых топологий для построения периметральных систем видеонаблюдения.

Основное отличие RSTP и Fast Ring Network - в скорости восстановления сети после разрыва кольца. Fast Ring Network имеет гарантированное время восстановления (т.н. “время сходимости”) менее 50 мс для кольца из 30 коммутаторов. RSTP работает медленнее (время восстановления от нескольких секунд до 1-2 минут) и напрямую зависит от числа коммутаторов в кольце.

На данный момент для создания кольцевой топологии с поддержкой Fast Ring Network требуется использовать сторонние L2+ коммутаторы, поддерживающие протокол Fast Ring Network (Ring topology), однако, очередном обновлении линейки видеонаблюдения "Болид" целесообразность расширения модельного ряда коммутаторов будет рассмотрена.

Сформулируем рекомендации по использованию управляемых и неуправляемых коммутаторов компании "Болид":

Тип коммутаторовМодельНазначение
Работа в выделенной замкнутой сети для системы видеонаблюденияРабота в общей сети заказчикаРезервирование передачи данных - кольцевая топология
НеуправляемыеSW-104SW-108дане желательнонет
Управляемые L2SW-216SW-224дада*нет**
Управляемые L2+SW-204дада*да**
* в сети заказчика должен иметься хотя бы один коммутатор L3 для выделения трафика видеонаблюдения в отдельную логическую подсеть (VLAN) ** для кольцевой топологии с поддержкой Fast Ring Network в коммутаторах Болид требуется один L2+ коммутатор, остальные L2
Резервирование электропитания

При выборе коммутатора необходимо учитывать параметры сетевого электропитания. Как правило, стоечные 19” коммутаторы питаются переменным напряжением 220 VAC. Коммутаторы промышленного исполнения могут иметь различные, не всегда стандартные номиналы питающего напряжения.

Для резервирования электропитания, как правило, используют источники бесперебойного питания (ИБП) либо резервированные источники питания с батареями. Важно заранее спланировать как именно резервировать электропитание коммутатора, учитывая не только собственное потребление, но и потребление нагрузки - камер видеонаблюдения, подключенные к портам коммутатора с функцией поддержки PoE.

МодельНапряжение питания, диапазон, ВПотребляемая мощность, Вт
SW-10448 - 57 В постоянного тока60
SW-10893
SW-204120
SW-216100 - 240 В переменного тока250
SW-224370
PoE (Power over Ethernet) - считаем бюджет по мощности

Power over Ethernet (PoE) — технология, позволяющая передавать удалённому устройству электрическую энергию вместе с данными через стандартную витую пару в сети Ethernet.

При выборе коммутатора необходимо учитывать два параметра, касающиеся использования технологии PoE:

  • максимальная мощность, выделяемая коммутатором на 1 порт
  • общая мощность PoE коммутатора

Максимальная мощность, выделяемая коммутатором на 1 порт не должна быть меньше потребляемой мощности ни одной из подключенных к коммутатору камер. Суммарная потребляемая мощность всех камер не должна превышать общую мощность, выделяемую коммутатором на все PoE порты. Коммутаторы "Болид" поддерживают IEEE 802.3af-2003 и IEEE 802.3at-2009. В таблице представлены данные по коммутаторам "Болид":

МодельМаксимальная мощность PoE на 1 порт, не более ВтМаксимальная общая мощность PoE на все порты, не более Вт
SW-1043060
SW-1083093
SW-2041,2,3 порт - 304 порт - 60120
SW-21630250
SW-22430370
Классы потребление PoE IP камер Болид

Классы потребления мощности питаемых устройств приведены в таблице:

МодельПотребляемая мощность, не более ВтСтандарт PoEКласс PoE
VCI-1134,5IEEE 802.3af-20032
VCI-1225,1IEEE 802.3af-20032
VCI-1235,1IEEE 802.3af-20032
VCI-1209,09IEEE 802.3af-20033
VCI-121-0113IEEE 802.3af-20033
VCI-1305,5IEEE 802.3af-20032
VCI-1436IEEE 802.3af-20032
VCI-140-0111,5IEEE 802.3af-20033
VCI-1847IEEE 802.3af-20032
VCI-180-0112,95IEEE 802.3af-20033
VCI-2124,5IEEE 802.3af-20032
VCI-2222,6IEEE 802.3af-20031
VCI-7225IEEE 802.3af-20032
VCI-2209,75IEEE 802.3af-20033
VCI-220-0110IEEE 802.3af-20033
VCI-2305,5IEEE 802.3af-20032
VCI-830-017,5IEEE 802.3af-20033
VCI-2424IEEE 802.3af-20032
VCI-7425IEEE 802.3af-20032
VCI-240-0111,5IEEE 802.3af-20033
VCI-8844,97IEEE 802.3af-20032
VCI-280-0115IEEE 802.3at-20094
VCI-252-056IEEE 802.3af-20032
VCI-32010IEEE 802.3af-20033
VCI-4124,5IEEE 802.3af-20032
VCI-4324,85IEEE 802.3af-20032
VCI-627-0010IEEE 802.3af-20033
VCI-62713IEEE 802.3at-20094
VCI-628-0012IEEE 802.3af-20033
VCI-528-0020IEEE 802.3at-20094
VCI-52826IEEE 802.3at-20095
VCI-52943IEEE 802.3at-20095
VCI-529-0638IEEE 802.3at-20095
TCI-1117IEEE 802.3af-20033

Интересный функционал для видеонаблюдения - PoE Management. Он, например, позволяет управлять подачей напряжения на камеру, что, например, важно для удаленной перезагрузки “зависшей” камеры. Кроме этого, поддерживаются следующие функции:

  • функция приоритета по мощности для каждого порта может быть 3 степеней: низкая, средняя, высокая. В случае перегрузки системы будут отключены порты с низким приоритетом
  • функция настройки порога перегрузки - в случае превышения предельно допустимой мощности, система отключит питание с порта с наименьшим приоритетом
  • ручное управление включением или отключением функции PoE на порту
Условия эксплуатации - температурный диапазон, защита от импульсных перенапряжений

При выборе коммутатора приходится учитывать условия его будущей эксплуатации. Если эксплуатация идет вне помещений, то даже для термошкафов желательно подбирать камеры с расширенным температурным диапазоном до -30°С. Кроме того, при планировании локальной вычислительной сети необходимо учитывать возможность перенапряжений в линиях связи и питания. Для коммутаторов Болид предельные перенапряжения импульсных помех представлены в таблице 4:

МодельГраничные параметры входного воздействия (8/20 мкс)
синфазной помехи по схеме “провод-провод”, кВдифференциальной помехи по схеме “провод-земля”, кВ
SW-10442
SW-20442
SW-10842
SW-21621
SW-22421
Выводы

Подбор коммутаторов для организации локальной вычислительной сети (ЛВС) системы охранного видеонаблюдения - задача с большим числом переменных, однако достаточно простая и формализуемая. Данные, приведенные в статье помогут вам подобрать нужную модель коммутатора Болид для любой задачи - от системы видеонаблюдения офисного здания до крупной периметральной системы с промышленными коммутаторами в уличных термошкафах с подключением по оптоволоконным линиям связи с резервированием каналов кольцевой топологией организации ЛВС.

bolid.ru

«Чем отличается коммутатор от маршрутизатора?» – Яндекс.Кью

Сначала необходимо отметить, что существуют сетевые технологии, в которых коммутаторы не нужны, например кольцевые с захватом маркера (TokenRing). Мы же рассмотрим наиболее распространенную технологию сетей - общая шина (Ethernet) - обычно под сетью именно ее и понимают.

В таких сетях коммутатор (англ. - switch, трансл. - свитч) объединяет сетевые узлы (компьютеры, сетевые принтеры и т.п. устройства) в физическую сеть, а точнее в один сегмент сети. Без него этот сегмент (например, сеть одного кабинета или маленького офиса, или домашняя сеть) работать не может. Но ничего кроме того, чтобы передать данные от одного узла другому узлу в пределах сегмента он не умеет.

Маршрутизатор (англ. router, трансл. - роутер) же умеет работать с несколькими сегментами сети и передавать данные между ними, т.е. маршрутизировать данные. Например, между вашей домашней сетью и сетью вашего провайдера. А у провайдера маршрутизатор передает данные от абонентов в сети других операторов, с которыми у него есть маршрутизация и т.д. по всему миру от одного узла до другого (например, с моего ПК на сервер TheQuestion и обратно).

Выдачей IP-адресов не занимаются ни коммутатор, ни маршрутизатор. Это функция отдельного, т.н. DHCP-сервера, которая может быть встроена как в коммутатор (очень редко), так и в маршрутизатор (очень часто). В крупных сетях он обычно отдельно выделенное устройство.

Существуют т.н. коммутаторы третьего уровня - коммутаторы с возможностью маршрутизации, также маршрутизаторы с большим количеством сетевых портов, как у коммутаторов. В принципе это одно и тоже, разница между ними лишь в преобладающей функции.

Домашние Wi-Fi-роутеры - это обычно маршрутизаторы с выделенным портом для подключения к сети оператора, несколькими сетевыми портами для проводного подключения домашних устройств и радио-модулем для подключения домашних беспроводных устройств. Он чаще всего умеет выполнять функцию выдачи адресов для автоматической настройки сетевых узлов (DHCP-сервер), при подключении внешнего хранилища (жесткого диска, флешки и т.п.) может также быть файловым и мультимедийным сервером и т.п. Одним словом является многофункциональным сетевым устройством.

Так вот, выделенный порт (т.н. WAN-порт) для подключения к оператору (провайдеру) соединяет его в сегментом сети провайдера, а остальные порты (проводные, радио, USB и т.д.) - сегмент домашней локальной сети. И получается, что если, например, вам надо переслать файл с компа на планшет или посмотреть на телике файл с домашнего сетевого хранилища, то ваш Wi-Fi-роутер выполняет функцию коммутатора, т.к. вся сетевая активность ограничивается одним (домашним, в данном случае) сегментом. А когда вы, например, ищете что-то в гугле, то он выполняет функцию маршрутизатора, т.к. необходимые данные (результат поиска) находятся на устройстве за пределами домашнего сегмента сети.

yandex.ru

Как правильно выбрать коммутатор?

Любой системный администратор рано или поздно сталкивается с задачей построения или модернизации локальной сети предприятия. К такому вопросу следует подходить очень серьезно и основательно, т.к. от этого зависит дальнейшая беззаботная работа.

Как выбрать коммутатор под свои задачи, чтобы потом не покупать новый?

Коммутатор или в простонародье свитч - это сетевое устройство, которое соединяет несколько компьютеров в одну единую локальную сеть. Современные свитчи обладают очень большим рядом функций, которые очень сильно могут облегчить дальнейшую работу админа. От правильного выбора свитчей зависит функционирование всей локальной сети и работа предприятия в целом.

При выборе сетевого оборудования начинающий системный администратор сталкивается с большим количеством непонятных обозначений и поддерживаемых протоколов. Данное руководство написано с целью восполнить этот пробел знаний у начинающих.

Вводная информация

Многие до сих пор не видят разницы между свичом и хабом. Понимая, что тема уже много раз обсуждалась, все же хотелось начать именно с нее.

Несколько лет назад хаб был основным сетевым устройством, которое использовалось для построения локальных сетей. Работа хаба сводится к работе обычного повторителя, который просто пересылает полученную информацию на все порты. Получается, что всем компьютерам сети пересылается эта информация, но принимает ее только один. Хабы очень быстро "забивали" всю локальную сеть ненужным трафиком. Для построения локальной сети с помощью хабов нужно было придерживаться внегласного правила "четырех хабов". Это правило гласит о том, что нельзя использовать более 4 хабов подряд в линии, т.к. при нарушении этого правила большая вероятность возникновения "пакетного шторма" (это когда огромное количество паразитных пакетов пересылаются по сети).

Для свитчей это правило уже не актуально, т.к. современные свитчи даже начального уровня в ходе работы формируют таблицу коммутации, набирая список MAC-адресов, и согласно нее осуществляют пересылку данных. Каждый свитч, после непродолжительного времени работы, "знает" на каком порту находится каждый компьютер в сети.

Далее жаргонное слово свитч будет заменено на коммутатор, дабы придать этой публикации более серьезный вид.

При первом включении, таблица коммутации пуста и коммутатор начинает работать в режиме обучения. В режиме обучения работа свича идентична работе хаба: коммутатор, получая поступающие на один порт данные, пересылает их на все остальные порты. В это время коммутатор производит анализ всех проходящих портов и в итоге составляет таблицу коммутации.

Особенности, на которые следует обратить внимание при выборе коммутатора

Чтобы правильно сделать выбор при покупке коммутатора, нужно понимать все обозначения, которые указываются производителем. Покупая даже самое дешевое устройство, можно заметить большой список поддерживаемых стандартов и функций. Каждый производитель сетевого оборудования старается указать в характеристиках как можно больше функций, чтобы тем самым выделить свой продукт среди конкурентов и повысить конечную стоимость.

Распространенные функции коммутаторов:
  • Количество портов. Общее количество портов, к которым можно подключить различные сетевые устройства.

    Количество портов лежит в диапазоне от 5 до 48.

  • Базовая скорость передачи данных. Это скорость, на которой работает каждый порт коммутатора. Обычно указывается несколько скоростей, к примеру, 10/100/1000 Мб/сек. Это говорит о том, что порт умеет работать на всех указанных скоростях. В большинстве случаев коммутатор поддерживает стандарт IEEE 802.3 Nway автоопределение скорости портов.

    При выборе коммутатора следует учитывать характер работы подключенных к нему пользователей.

  • Внутренняя пропускная способность. Этот параметр сам по себе не играет большого значения. Чтобы правильно выбрать коммутатор, на него следует обращать внимание только в паре с суммарной максимальной скоростью всех портов коммутатора (это значение можно посчитать самостоятельно, умножив количество портов на базовую скорость порта). Соотнося эти два значения можно оценить производительность коммутатора в моменты пиковой нагрузки, когда все подключенные пользователи максимально используют возможности сетевого подключения. К примеру, Вы используете 16-портовый коммутатор на скорости 100 Мб/сек, имеющий пропускную способность в 1Гб/сек. В моменты пиковой нагрузки 16 портов смогут передавать объем информации равный:

    16x100=1б00(Мб/сек)=1.6(Гб/сек)

    Полученное значение меньше пропускной способности самого коммутатора. Такой коммутатор подойдет в большинстве случаев небольшой организации, где на практике приведенную ситуацию можно встретить крайне редко, но не подойдет для организации, где передаются большие объемы информации.

    Для правильного выбора коммутатора следует учитывать, что в действительности внутренняя пропускная способность не всегда соответствует значению, которое заявлено производителем.

  • Автосогласование между режимами Full-duplex или Half-duplex. В режиме Full-duplex данные передаются в двух направлениях одновременно. При режиме Half-duplex данные могут передаваться только в одну сторону одновременно. Функция автосогласования между режимами позволяет избежать проблем с использованием разных режимов на разных устройствах.
  • Автоопределение типа кабеля MDI/MDI-X. Это функция автоматически определят по какому стандарту был "обжат" кабель витая пара, позволяя работать этим 2 стандартам в одной ЛВС.
  • Стандарт MDI:
    Стандарт MDI-X:
  • Наличие порта Uplink. Порт Uplink предназначен для каскадирования коммутаторов, т.е. объединение двух коммутаторов между собой. Для их соединения использовался перекрестный кабель (Crossover). Сейчас такие порты можно встретить только на старых коммутаторах или на специфическом оборудовании. Грубо говоря, в современных коммутаторах все порты работают как Uplink.
  • Стекирование. Под стекированием коммутаторов понимается объединение нескольких коммутаторов в одно логическое устройство. Стекирование целесообразно производить, когда в итоге требуется получить коммутатор с большим количеством портов (больше 48 портов). Различные производители коммутаторов используют свои фирменные технологии стекирования, к примеру, Cisco использует технологию стекирования StackWise (шина между коммутаторами 32 Гбит/сек) и StackWise Plus (шина между коммутаторами 64 Гбит/сек).

    При выборе коммутатора следует отдавать предпочтение устройствам поддерживающим стекирование, т.к. в будущем эта функция может оказаться полезной.

  • Возможность установки в стойку. Это означает, что такой коммутатор можно установить в стойку или в коммутационный шкаф. Наибольшее распространение получили 19 дюймовые шкафы и стойки, которые стали для современного сетевого оборудования неписанным стандартом.

    Большинство современных устройств имеют такую поддержку, поэтому при выборе коммутатора не стоит акцентировать на этом большого внимания.

  • Количество слотов расширения. Некоторые коммутаторы имеют несколько слотов расширения, позволяющие разместить дополнительные интерфейсы. В качестве дополнительных интерфейсов выступают гигабитные модули, использующие витую пару, и оптические интерфейсы, способные передавать данные по оптоволоконному кабелю.
  • Размер таблицы MAC-адресов. Это размер коммутационной таблицы, в которой соотносятся встречаемые MAC-адреса с определенным портом коммутатора. При нехватке места в коммутационной таблице происходит затирание долго не используемых MAC-адерсов. Если количество компьютеров в сети много больше размера таблицы, то происходит заметное снижение производительности коммутатора, т.к. при каждом новом MAC-адресе происходит поиск компьютера и внесение отметки в таблицу.

    При выборе коммутатора следует прикинуть примерное количество компьютеров и размер таблицы MAC-адресов коммутатора.

  • Flow Control (Управление потоком). Управление потоком IEEE 802.3x обеспечивает защиту от потерь пакетов при их передаче по сети. К примеру, коммутатор во время пиковых нагрузок, не справляясь с потоком данных, отсылает отправляющему устройству сигнал о переполнении буфера и приостанавливает получение данных. Отправляющее устройство, получая такой сигнал, останавливает передачу данных до тех пор, пока не последует положительного ответа от коммутатора о возобновлении процесса. Таким образом два устройства как бы "договариваются" между собой когда передавать данные, а когда нет.

    Так как эта функция присутствует почти во всех современных коммутаторах, то при выборе коммутатора на ней не следует акцентировать особого внимания.

  • Jumbo Frame. Наличие этой функции позволяет коммутатору работать с более большим размером пакета, чем это оговорено в стандарте Ethernet.

    После приема каждого пакета тратится некоторое время на его обработку. При использовании увеличенного размера пакета по технологии Jumbo Frame, можно существенно сэкономить на времени обработки пакета в сетях, где используются скорости передачи данных от 1 Гб/сек и выше. При меньшей скорости большого выигрыша ждать не стоит.

    Технология Jumbo Frame работает только между двумя устройствами, которые оба ее поддерживают.

    При подборе коммутатора на этой функции не стоит заострять внимание, т.к. она присутствует почти во всех устройствах.

  • Power over Ethernet (PoE). Эта технология передачи электрического тока для питания коммутатора по неиспользуемым проводам витой пары. Стандарт IEEE 802.af.
  • Встроенная грозозащита. Некоторые производители встраивают в свои коммутаторы технологию защиты от гроз. Такой коммутатор следует обязательно заземлить, иначе смысл этой дополнительной функции отпадает.

Читайте о новинках железа, новости компьютерных компаний и будите всегда в курсе последних достижений.

Какие коммутаторы бывают?

Помимо того, что все существующие коммутаторы различаются количеством портов (5, 8, 16, 24 и 48 портов и т.д.) и скоростью передачи данных (100Мб/сек, 1Гб/сек и 10Гб/сек и т.д.), коммутаторы можно так же разделить на:

  1. Неуправляемые свичи - это простые автономные устройства, которые управляют передачей данных самостоятельно и не имеющие инструментов ручного управления. Некоторые модели неуправляемых свичей имеют встроенные инструменты мониторинга (например некоторые свичи Compex).

    Такие коммутаторы получили наибольшее распространение в "домашних" ЛВС и малых предприятиях, основным плюсом которых можно назвать низкую цену и автономную работу, без вмешательства человека.

    Минусами у неуправляемых коммутаторов является отсутствие инструментов управления и малая внутренняя производительность. Поэтому в больших сетях предприятий неуправляемые коммутаторы использовать не разумно, так как администрирование такой сети требует огромных человеческих усилий и накладывает ряд существенных ограничений.

  2. Управляемые свичи - это более продвинутые устройства, которые также работают в автоматическом режиме, но помимо этого имеют ручное управление. Ручное управление позволяет очень гибко настроить работу коммутатора и облегчить жизнь системного администратора.

    Основным минусом управляемых коммутаторов является цена, которая зависит от возможностей самого коммутатора и его производительности.

Абсолютно все коммутаторы можно разделить по уровням. Чем выше уровень, тем сложней устройство, а значит и дороже. Уровень коммутатора определяется слоем на котором он работает по сетевой модели OSI.

Для правильного выбора коммутатора Вам потребуется определиться на каком сетевом уровне необходимо администрировать ЛВС.

Разделение коммутаторов по уровням:
  1. Коммутатор 1 уровня (Layer 1). Сюда относятся все устройства, которые работают на 1 уровне сетевой модели OSI - физическом уровне. К таким устройствам относятся повторители, хабы и другие устройства, которые не работают с данными вообще, а работают с сигналами. Эти устройства передают информацию, словно льют воду. Если есть вода, то переливают ее дальше, нет воды, то ждут. Такие устройства уже давно не производят и найти их довольно сложно.
  2. Коммутатор 2 уровня (Layer 2). Сюда относятся все устройства, которые работают на 2 уровне сетевой модели OSI - канальном уровне. К таким устройствам можно отнести все неуправляемые коммутаторы и часть управляемых.

    Коммутаторы 2 уровня работают с данными ни как с непрерывным потоком информации (коммутаторы 1 уровня), а как с отдельными порциями информации - кадрами (frame или жарг. фреймами). Умеют анализировать получаемые кадры и работать с MAC-адресами устройств отправителей и получателей кадра. Такие коммутаторы "не понимают" IP-адреса компьютеров, для них все устройства имеют названия в виде MAC-адресов.

    Коммутаторы 2 уровня составляют коммутационные таблицы, в которых соотносят MAC-адреса встречающихся сетевых устройств с конкретными портами коммутатора.

    Коммутаторы 2 уровня поддерживают протоколы:

    • IEEE 802.1p или приоритизация (Priority tags). Стандарт IEEE 802.1p позволяет отсортировать весь трафик на пакеты по степени важности, выставив приоритеты. Более приоритетные пакеты, имеющие более высокую важность, будут отправляться в первую очередь.

      Например, весьма логично дать высокий приоритет пакетам VoIP и низкий — пакетам FTP.

    • IEEE 802.1q или виртуальные сети (VLAN). Протокол IEEE 802.1q позволяет внутри одной физической сети построить несколько отдельных логических сетей (виртуальных сетей).
      Разделить существующую ЛВС на виртуальные сети можно:
      • присвоив уникальный идентификатор VLAN каждому порту коммутатора, при этом порты коммутаторов с одним номером будут находиться в одной виртуальной сети;
      • присвоив каждому MAC-адресу, внесенному в коммутационную таблицу, уникальный номер VLAN;
      • присвоив уникальный идентификатор VLAN после прохождения аутентификации, при использовании протокола 802.1x.
    • IEEE 802.1d Spanning Tree Protocol (STP), в задачи которого входит приведение всей ЛВС к древовидной структуре.

      Данный протокол, по большому счету, используется для повышения отказоустойчивости всей ЛВС. Структура ЛВС изначально строится с избыточным количеством линий связи. "Лишние" линии связи, во избежании закольцовывания, данный протокол временно отключает, приводя всю структуру ЛВС к древовидному виду. При обрыве действующей линии связи протокол самостоятельно ищет новый кратчайший путь, восстанавливая тем самым работу ЛВС в целом.

    • IEEE 802.1w Rapid Spanning Tree Protocol (RSTP) более усовершенствованный стандарт IEEE 802.1d, который обладает более высокой устойчивостью и меньшим временем "восстановления" линии связи.
    • IEEE 802.1s Multiple Spanning Tree Protocol (MSTP) является наиболее современным протоколом, учитывающим все достоинства и недостатки предыдущих решений.
    • IEEE 802.3ad Link aggregation for parallel links или агрегирование каналов используется для повышения пропускной способности канала. Фактически это объединение нескольких портов в один высокоскоростной порт с суммарной скоростью объединенных портов. Максимальная скорость определена стандартом IEEE 802.3ad и составляет 8 Гбит/сек.
  3. Коммутатор 3 уровня (Layer 3). Сюда относятся все устройства, которые работают на 3 уровне сетевой модели OSI - сетевом уровне. К таким устройствам относятся все маршрутизаторы, часть управляемых коммутаторов, а так же все устройства, которые умеют работать с различными сетевыми протоколами: IPv4, IPv6, IPX, IPsec и т.д. Коммутаторы 3 уровня целесообразнее отнести уже не к разряду коммутаторов, а к разряду маршрутизаторов, так как эти устройства уже полноценно могут маршрутизировать, проходящий трафик, между разными сетями. Коммутаторы 3 уровня полностью поддерживают все функции и стандарты коммутаторов 2 уровня. С сетевыми устройствами могут работать по IP-адресам. Коммутатор 3 уровня поддерживает установку различных соединений: pptp, pppoe, vpn и т.д.
  4. Коммутатор 4 уровня (Layer 4). Сюда относятся все устройства, которые работают на 4 уровне сетевой модели OSI - транспортном уровне. К таким устройствам относятся более продвинутые маршрутизаторы, которые умеют работать уже с приложениями. Коммутаторы 4 уровня используют информацию, которая содержится в заголовках пакетов и относится к уровню 3 и 4 стека протоколов, такую как IP-адреса источника и приемника, биты SYN/FIN, отмечающие начало и конец прикладных сеансов, а также номера портов TCP/UDP для идентификации принадлежности трафика к различным приложениям. На основании этой информации, коммутаторы уровня 4 могут принимать интеллектуальные решения о перенаправлении трафика того или иного сеанса.

Чтобы правильно подобрать коммутатор Вам нужно представлять всю топологию будущей сети, рассчитать примерное количество пользователей, выбрать скорость передачи данных для каждого участка сети и уже под конкретную задачу начинать подбирать оборудование.

Управление коммутаторами

Интеллектуальными коммутаторами можно управлять различными способами:

  • через SSH-доступ. Подключение к управляемому коммутатору осуществляется по защищенному протоколу SSH, применяя различные клиенты (putty, gSTP и т.д.). Настройка происходит через командную строку коммутатора.
  • через Telnet-доступ к консольному порту коммутатора. Подключение к управляемому коммутатору осуществляется по протоколу Telnet. В результате мы получаем доступ к командной строке коммутатора. Применение такого доступа оправданно только при первоначальной настройки, т. к. Telnet является незащищенным каналом передачи данных.
  • через Web-интерфейс. Настройка производится через WEB-браузер. В большинстве случаев настройка через Web-интерфейс не дает воспользоваться всеми функциями сетевого оборудования, которые доступны в полном объеме только в режиме командной строки.
  • через протокол SNMP. SNMP - это протокол простого управления сетями.

    Администратор сети может контролировать и настраивать сразу несколько сетевых устройств со своего компьютера. Благодаря унификации и стандартизации этого протокола появляется возможность централизованно проверять и настраивать все основные компоненты сети.

Чтобы правильно выбрать управляемый коммутатор стоит обратить внимание на устройства, которые имеют SSH-доступ и протокол SNMP. Несомненно Web-интерфейс облегчает первоначальную настройку коммутатора, но практически всегда имеет меньшее количество функций, чем командная строка, поэтому его наличие приветствуется, но не является обязательным.

Случайные 7 статей:

  1. Создание мультизагрузочной флешки с помощью SARDU
  2. Как изменить имя интерфейса с eth0 на eth2 в Debian?
  3. Планировщик в Linux или как правильно использовать crontab
  4. Меняем интерфейс Grub2 с помощью Burg
  5. Ошибка IE11 Exception in window.onload: Error: An error has ocurredJSPlugin.3005
  6. Как изменить фон в GRUB2?
  7. Устанавливаем flash-плеер в 64-битной Ubuntu

Комментарии [19]

itshaman.ru

Сетевой коммутатор


Подробности
Родительская категория: Сетевые технологии

Сетевой коммутатор или по другому switch — это устройство, которое предназначено для объединения нескольких сетевых приборов в одной области сети. Данное устройство работает на втором (канальном) уровне сетевой модели OSI.

Принцип работы сетевого коммутатора

В сетевом коммутаторе заложена специальная схема коммутации в виде таблицы, которая хранится в ассоциативной памяти самого устройства. В данной таблице располагаются MAC-адреса узлов. Во время запуска свитча таблица остаётся пустой. На следующем этапе данные, которые поступили на один из портов автоматически отправляются на все оставшиеся порты. В этот момент данное устройство находится в процессе анализирования кадров, определив MAC-адрес отправителя оставляет его в таблице. Далее, если MAC-адрес клиента не инициализирован с каким нибудь портом, то фреймы (кадры) отправляются на оставшиеся порты, кроме порта отправителя.

Рисунок 1. Неуправляемый коммутатор

Характеристика сетевого коммутатора

Режимы коммутации сетевого коммутатора

Одной из характеристик является — вид режима коммутации. Распространены три режима, каждый их которых комбинирует в себе режим ожидания и уровень надёжности:

  • Режим временного хранения. Сетевой коммутатор считывает данные во фрейме, осуществляет проверку на наличие ошибок, затем определяет порт и отправляет в него фрейм.
  • Сквозной. Свитч читает во фрейме только адрес, затем выполняется процесс коммутации. Главное преимущество данного режима — высокая скорость передачи данных.
  • Бесфрагментный. Это модифицированный вариант сквозного режима. Данные передаются после фильтрации фрагментов на определение коллизий (конфликтов). Первые 64 байта первого кадра проходят проверку на наличие коллизий (конфликтов), если фрейм оказывается повреждённый или определяется коллизия, то передача данных невозможна.

Виды сетевых коммутаторов

Сетевые коммутаторы принято делить на два вида:

  1. Неуправляемые
  2. Управляемые

Неуправляемые коммутаторы

Неуправляемые коммутаторы — это коммутаторы, которые не имеют конфигурационного интерфейса или каких либо других настроек. Это такие устройства, которые работают по принципу "Plug and Play", например при установке windows server 2003, неуправляемый коммутатор можно установить и сразу пользоваться. Данные свитчи подаются по невысокой цене и используются дома или в малых предприятиях.

Управляемые коммутаторы

Рисунок 2. Управляемый коммутатор

Эти коммутаторы являются сложными устройствами и позволяют настраивать коммутацию на сетевом уровне модели OSI. Имеют несколько вариантов изменения режима работы: интерфейс командной строки, TelNet, Secure Shell, работающие через протокол управления сетью (SNMP). Примеры конфигурирования: настройка пропускной способности, создание/изменение виртуальной частной сети (VPN). В свою очередь управляемые коммутаторы делятся на два подвида:

Простые

Это сетевые коммутаторы с ограниченным набором конфигурационных настроек. Данные свитчи продаются на рынке в ценовом диапазоне между управляемыми и неуправляемыми коммутаторми. В данном варианте предоставлена возможность управления устройством через веб-интерфейс, а так же такие базовые настройки как: настройка VLAN, управление пропускной способностью.

Сложные (корпоративные) коммутаторы

Имеют полный набор функционального управления, в том числе: CLI, SNMP, веб-интерфейс. В некоторых вариантах возможно дополнительные конфигурационные функции, например: резервное копирование и восстановление конфигураций. Корпоративные коммутаторы обычно используются в в больших производительных системах и находятся в специальных стойках.

Сложные коммутаторы часто объединяют в одно сетевое устройство, именуемое — стек. Делается это для увеличения количества портов.

Рисунок 3. Стек

perscom.ru

Чем отличается коммутатор от маршрутизатора, свитч от роутера?

Для связи электронных устройств пользуются разными методами. На фирмах, предприятиях, в организациях, корпорациях этими вопросами профессионально занимаются системные администраторы. 

Но что делать обычным пользователям, когда нужно выбрать один из аппаратов, чтобы создать связующую информационную сеть? Обычным людям незнакомы даже термины, которые используют при подборе оборудования, названия разной техники, неизвестны функциональность, предназначение. Естественно, разница между ними есть и колоссальная, поэтому стоит разобраться, что такое:

Сетевые устройства мало отличаются внешним исполнением, представлены компактными коробочками с портами и соединителями. Но наделены разносторонними характеристиками, их используют для достижения разных целей. Каждое оборудование вносит свою лепту в построение компьютерных сетей.

Что такое коммутатор (свитч)?

Концентраторы уже давно признаны настолько примитивными и морально устаревшими, неспособными самостоятельно выявить конечного адресата, что их давно заменили высокорезультативными коммутаторами, которые справляются с анализом данных в высокоскоростном режиме. Это главные отличительные свойства, которые присущи приборам, именуемым еще свитчами.

Смысл применения оборудования с мостовыми технологиями: коммутатор «роднит» между собой внутри одной локальной сети разные узлы в заданном количестве (принтеры, компьютеры и др.) и организует обмен данными исключительно между ними, большее ему не под силу.

Преимущества:

  • повышенная производительность;

  • высокая безопасность;

  • ненужно перерабатывать лишнюю информацию.

Разновидности коммутаторов:

  • управляемые: сложно устроенные, со вспомогательным функционалом, управление коммутацией – канальный уровень модели OSI;

  • неуправляемые: просто устроенные.

Принцип работы коммутатора

Таблицы коммутации содержат сведения, которые помогают уточнить, каким портам свитча соответствует каждый MAC-адрес узлов. Все это сосредоточено в его памяти. Когда свитч включают, в таблице ничего нет. Он обучаемый и продолжает работать в этом режиме, анализируя информационный поток и заполняя таблицу MAC-адресами компьютеров, с которых отправлены пакеты данных.

Сначала, данные, которые поступили на один порт, доступны всем портам. Позже, свитч разбирается и понимает, какому узлу определен поступивший на один из его портов пакет данных, и отправляет его нужному адресату. В процессе обучения коммутатор создает полноценную таблицу коммутации с учетом всех портов, чтобы локализовать трафик.

Что такое маршрутизатор (роутер)?

Связывает между собой несколько разных сетей и позволяет проводить обмен информацией. Роутер маршрутизирует трафик. Передача данных происходит не только между компьютерами в пределах одной домашней или рабочей сети, в отличие от коммутатора маршрутизаторы рассылают пакеты данных между рабочей сетью и провайдера, например.

Благодаря роутеру движение сетевого трафика происходит по четко заданному маршруту за счет IP-адресов.

Преимущества:

  • информационные потоки налажены среди всех узлов в одном сегменте сети;

  • передача данных между несколькими сегментами сетей: интернетом и локальной сетью.

Говоря о маршрутизаторе, подразумевают несколько разновидностей, пользователи выбирают наиболее оптимальное решение для себя:

Принцип работы маршрутизатора

У всех роутеров, независимо от отличительных свойств, индивидуальных особенностей, принцип работы идентичен. Получают информацию из локальной сети или интернета, анализируют ее и отправляют конкретному получателю. С технологией Wi-Fi роутер раздает интернет в одно время многим узлам: ноутбуки, компьютеры, смартфоны, телевизоры, планшеты, игровые приставки и т.д., хотя подача интернета происходит только по одному кабелю LAN.

Данные адресату маршрутизаторы направляют, используя таблицу маршрутизации. Выбирают самый надежный и качественный путь. В электронной базе данных хранится сетевой маршрут к любому устройству в сети, а также другим аппаратам, поэтому есть связь и между маршрутизаторами. Каждый известный им адрес маршрутизаторы регулярно тестируют, чтобы понимать, работает еще устройство или уже отключено, и как быстро оно принимает пакет данных.

Отличие коммутатора от маршрутизатора простыми словами

Они решают задачи в разной плоскости. Коммутатор и маршрутизатор имеют много общего, но и достаточно разные:

  • свитч гораздо проще с технической точки зрения с ограниченной функциональностью;

  • маршрутизаторы сложней устроены, могут анализировать объем информации, определяют IP-адреса;

  • отличие любого коммутатора – работа исключительно с MAC-адресами;

  • маршрутизаторам свойственен сетевой уровень модели OSI;

  • маршрутизаторы от свитчей отличаются подключением к интернету;

  • для работы коммутатора и маршрутизатора нужен порт LAN, но последнее устройство еще использует и WAN-порт;

  • присматривая коммутатор или маршрутизатор, обращают внимание не только на функциональные возможности, но и стоимость, поскольку коммутаторы гораздо проще и дешевле.

Гораздо легче увидеть разницу и понять, что нужно купить в каждом конкретном случае, после рассмотрения свойств, особенностей, возможностей коммутатора и маршрутизатора, поскольку их функционал отличается. Чтобы настроить элементарное соединение между несколькими компьютерами, достаточно и свитча. С роутером получится подключить каждый узел к сети интернет.

galtsystems.com


Смотрите также