Нанотехнологии что это такое и зачем они нужны


Нанотехнологии - что это такое?

Материалы, со стоимостью около 20 млрд. €, что мы знаем о них?


В голубом свете светящиеся жидкие наночастицы

Невооружённым глазом невидимая частица Nano (миллиардная часть метра) в природе существует с незапамятных времен, когда только земля сформировалась, но, в конце концов, наука нанотехнологий нашла им применение в различных областях человеческой деятельности – в медицине, фармацевтике, электронике, косметике, текстильной промышленности и даже в пищевой.
Отмечено что материалы на нано уровне имеют совершенно различное поведение и могут добавить неестественных свойств. Однако там, где открываются новые возможности, всегда прячется определенный риск.

Вопрос токсичности поднят совсем недавно

Тема, использования человеком наночастиц в производстве различных изделий, рассматривалась неделю назад на выставке “Эко Логика” в ходе которой неправительственная организация Балтийский экологический форум (БЭФ) провела дискуссию для школьников.
Им рассказали, что источников наноматериалов предостаточно в природе -  например, после извержений вулканов, лесных пожаров и песчаных бурь в природу выбрасываются миллиарды мельчайших наноразмерных  частиц. Такие же частицы “производятся” и некоторыми источниками человеческой деятельности – такими как сигаретный дым или выхлопные газы автомобилей.
Наверное, быстрее всего развивающаяся область применения нано частиц  - это промышленность: косметика, лекарства, спорттовары, видеотехника, текстиль, упаковки пище продуктов, и т.д.
Например, в текстильной промышленности, наночастицы серебра могут быть использованы для обеспечения антибактериальных свойств, а углеродные нанотрубки спортивному инвентарю добавляют прочности и легкости.
Несмотря на то, что о наночастицах начали говорить аж с 1985 года, отдельные статьи о негативных последствиях и их токсичности появились в прессе в 1996-1998 годах, а с 2004 года начали по-настоящему говорить о токсикологии. Если наночастицы характерны отличными характеристиками, то попавшие в живые организмы тоже имеют различное воздействие. Всегда ли этот эффект бывает хорошим и откуда возникает риск, сегодня и поговорим.
Нанотехнологии преемственность технологий, сочетают в себе физику и химию, а также биологию, потому изучая эту область нужен комплексный подход на изучение наночастиц и их применении.
Оценивая воздействие на здоровье, следует учитывать всевозможное воздействие – химическое, физическое, и биологические свойства.

Самая большая проблема - отсутствие исследований

В тело человека наночастицы могут попасть различными способами, если используются косметические средства, содержащие наночастицы, мы мажем их на кожу, и наночастицы легко попадаю в кровь. Если наночастицы используются в пищевых упаковках, они в организм легко попадают через пищеварительный тракт. Наночастицы можно вдохнуть через легкие. Первые исследования показали что наночастицы попавшие с пищей почти 98% удаляются организмом, но если они попали в кровь то 80% остаются в печени.
Эксперименты с животными показали, что биоаккумуляционные вещества (имеющие свойство накапливаться) освобождаются из легких от нескольких месяцев до нескольких год, так как обычные крупные частицы мы откашливаем гораздо быстрее.
Вдыхаемые наночастицы после семи дней были обнаружены в печени, селезенке, мозге, почках, сердце и костном мозге. Таким образом, вдыхаемые частицы разносятся по всему телу. В настоящее время считается, (потому что нет никаких точных доказательств), что неорганические частицы не участвуют в обмене веществ, а органические могут – есть подозрения, поэтому проводятся исследования. В настоящее время самая большая проблема в изучении наночастиц на организм человека, является отсутствие долгосрочных исследований.
Мы говорим, что это очень важно, когда имеем примеры использования опасных веществ в прошлом (например, когда началось широкое использование пластификаторов для снижения горючести веществ, а позже узнали о негативных последствиях этого материала на здоровье – начали жёстко регламентировать использование). Еще до широкого применения надо изучить все долгосрочные последствия и выбрать только безопасное использование. Нельзя обобщить все наночастиц и их использование во всех областях.

Манипуляция атомами и молекулами

Например, компания “Baltic Nano Technologies” применяет нанотехнологии для защиты поверхности различных материалов. Потребителям предоставляются некоторые вещества и их композиции для покрытия нужных поверхностей таких как: бетон, дерево, текстиль, стекло, керамика. Люди могут защитить разные поверхности от воздействия окружающей среды, легко их чистить и сохранять.
Нетехнологичные импрегнанты отличаются от обычных тем, что нанесенные на поверхность совершенно не меняют ни цвет ни воздухопроницаемость ни другие характеристики, только делают поверхность водонепроницаемой. Некоторые продукты могут сделать поверхность олеофобной, а это значит, что к такой поверхности не прилипнет грязь, масла, смазочные материалы, краски.
Спросив химиков о потенциальных рисках, связанных с нанотехнологиями, отвечают, что они в значительной степени зависят от того, какой из материалов, используются для достижения желаемой цели, и где это будет использовано.
Каждая область применения имеет свои риски. Вообще цель науки нанотехнологий, извлечение желаемых свойств материала, работая с материалом на нано уровне (1-100 нм), т.е. манипулируя атомами, молекулами или группами молекул, для получения структур с определенными свойствами.

Один из рисков - нерастворимость в воде


Капли воды на обработанной поверхности

Химик, чтобы проиллюстрировать, как использование наночастиц в продукции может дать им как положительные, так и отрицательные характеристики, дает пример с косметической продукцией.
В косметике используются такие образования как мицеллы, которые из-за своей схожести с мембранами клеток могут проникать в них и переносить полезные вещества, такие как коллаген, витамины и прочие. Без мицелий можем намазывать лицо чем только хотим, в клетки молекулы коллагена и витаминов не попадут, они не пройдут через барьер клеточной мембраны, и естественно кожа не получит необходимые питательные вещества.  Но всегда, в любой области есть свои плюсы и минусы. Вместе с витаминами в клетку попадают и совершенно ненужные и даже вредные вещества (например, консерванты).
В еще одном примере, где могут быть использованы в нанотехнологии, химики называют фармацевтику. Примером может быть продление действия препаратов, лекарств: выпиваем таблетку, которая содержит всю необходимую суточную дозу, но лекарство попадает в организм не сразу, а освобождается постепенно, медленно.
Представительница компании раскрывает секрет, что одним из рисков, связанных с наночастицами это нерастворимость в воде. Попавшие в организм 1-100nm наночастицы могут проникать очень глубоко, а потому что не растворяются в воде, там и остаются.


Керамическая черепица и капли воды

Приходилось слышать, что одни из первых, кто работали с наночастицами серебра и не очень охранявшие себя ученые ходили почерневшими руками, потому что проникшие в кожу нано частицы серебра оставались там на очень продолжительное время.

О реальной или воображаемой опасности

Чтобы лучше представить обычному человеку как действуют маленькие кусочки материи на нано уровне, ученые дают такой пример. Бросьте крупные кристаллы соли в стакан воды, а в другой стакан воды насыпьте измельчённую соль. В котором стакане соль быстрее растворится?
Так и с частицами – чем мельче, тем активнее. То, что обычно неопасно на микроуровне становится опасным в нано уровне. В косметике, например, в лаке для ногтей наночастицы придают лаку твердости и долговечности, здесь вреда организму нет, но если наночастицы используются в кремах, риск им попасть в организм и вызвать проблемы со здоровьем является реальным.
В некоторых продуктах для достижения желаемого эффекта, например, для покрытий  используются в небольшом количестве наночастицы аморфного кремния. В общем, диоксид кремния является относительно инертным материалом (песок) и в аморфной форме (не кристальной) наночастицы диоксида кремния столь же опасны, как опасна обычная пыль.
В нашем случае частицы диоксида кремния в покрытиях остаются связанные и в воздухе в виде пыли не летают.  Другие наши продукты опасны настолько, насколько опасны их составляющие химические вещества. Придерживаясь указанных норм безопасности, опасности для здоровья нет. Нанотехнологический процесс, при котором формируются структуры с нужными свойствами, происходит уже на покрытой поверхности. После покрытия через несколько минут, происходит химическая реакция, и образовавшиеся покрытие становится нетоксичным, примерно как краска или лак.

Маркировка NANO появится и на продуктах питания

Посчитано что за год в мировом рынке циркулирует около 11 млн. тонн наноматериалов, с рыночной стоимостью около 20 млрд. евро. Большую часть рынка нано продуктов на сегодня составляют черный уголь и аморфный диоксид кремния. Эти и ряд других наноматериалов на рынке циркулируют уже десятилетия и используются в различных целях.
В настоящее время становятся популярными: диоксид нано титана, оксид нано цинка, нано трубки углерода и нано серебро. Наноматериалы используются в электронике, в производстве солнечных панелей, в продуктах биомедицины, в том числе для диагностики и терапии опухолей. Наноматериалы помогают спасать человеческую жизнь, улучшают функциональность потребительских товаров.
Натурально существующие наночастицы можно обнаружить во всей человеческой среде обитания, о их существовании и поведению по существу известно всё. Тем не менее, недостаточно  данных о техногенных наночастицах в рабочей среде человека. Наблюдая за их существованием, сталкиваемся с техническими трудностями, которые возникают из-за небольшого размера наночастиц и низким уровнем концентрации.
Наночастицы могут быть использованы в пищевых продуктах, но есть требование, чтобы все ингредиенты с искусственными наночастицами должны быть четко указаны в списке ингредиентов. После таких ингредиентов в скобках должно быть слово "нано". (В Европе с декабря 2014г.)
В настоящее время из всех нано материалов дозволено  контактировать  в процессе производства пищевых продуктов только – нитриду титана, и то с ограничением, наночастицы нитрида титана недолжны свободно выделятся.
Применяя новые технологии, создаются такие материалы, где размер наночастиц существенно определяет различные физические и химические характеристики. Эти различные свойства могут определять и различные токсикологические свойства, следовательно, Европейское ведомство по безопасности пищевых продуктов, эти вещества должны оценивать в каждом конкретном случае на возможный риск до получения дополнительной информации об этих новых технологиях.

Интенсивно подготавливается каталог наноматериалов

Наноматериалы могут быть использованы, как уже упоминалось ранее, в косметических продуктах. Для их использования требования уже определены в Европейском парламенте и в Совете Европы.
Тем не менее, в том же документе, есть примечание, что настоящее время не достаточно информации о рисках, связанных с наноматериалами.
Перед поставкой на рынок косметической продукции с наноматериалами, необходимо по определенной форме, за 6 месяцев представить подробную информацию совету Европы, об используемых наноматериалах (например, идентификация наноматериала, свойства, токсикологические данные). СЕ рассматривает данные и, если есть какие-либо сомнения относительно безопасности наноматериала, требуют представления дополнительных данных. Если СЕ устанавливает, что использование наноматериалов в косметической продукции не представляет опасности для здоровья, такому косметическому продукту снимаются все препятствия попасть на рынок. Если косметический продукт с наночастицами попал на рынок, придерживаясь всех формальностей, значит, его безопасность не вызывает сомнений. В настоящее время в Европейской комиссии создана рабочая группа, интенсивно работает над подготовкой каталога наноматериалов, который, как ожидается, утвердят до конца этого года. Когда появится такой каталог, в нём будет учеными подтверждённый список наноматериалов, которые не оставляют сомнений о безопасности человеческому здоровью.

Перевод Juris
По материалам: http://delfi.lt/grynas/

www.art-cafe.info

Что такое нанотехнологии: просто о сложном

На сайте британского журнала New Scientist основные сведения о нанотехнологиях представлены в очень удобном виде - в форме ответов на часто задаваемые вопросы, пишет dp.ru.

Что такое нанотехнология?

Под термином «нанотехнология» следует понимать комплекс научных и инженерных дисциплин, исследующих процессы, происходящие в атомном и молекулярном масштабе. Нанотехнология предполагает манипуляции с материалами и устройствами настолько маленькими, что ничего меньшего быть не может. Говоря о наночастицах, обычно подразумевают размеры от 0,1 нм до 100 нм. Заметим, что размеры большинства атомов лежат в интервале от 0, 1 до 0, 2 нм, ширина молекулы ДНК примерно 2 нм, характерный размер клетки крови приблизительно 7500 нм, человеческий волос — 80 000 нм.

Почему маленькие объекты приобретают столь специфические свойства на уровне наномасштабов? К примеру, небольшие группы (их называют кластерами) атомов золота и серебра демонстрируют уникальные каталитические свойства, в то время как большие по размеру образцы обычно инертны. А наночастицы серебра демонстрируют отчетливо выраженные антибактериальные свойства и потому обычно используются в новых типах перевязочных материалов.

При уменьшении размера частиц возрастает отношение поверхности к объему. По этой причине наночастицы существенно легче вступают в химические реакции. В дополнение к этому на уровне менее 100 нм появляются эффекты квантовой физики. Квантовые эффекты могут влиять на оптические, электрические или магнитные свойства материалов непредсказуемым образом.

Маленькие кристаллические образцы некоторых веществ становятся прочнее, поскольку они просто достигают состояния, при котором не могут раскалываться так, как это происходит у больших кристаллов, когда на них воздействуют с усилием. Металлы становятся похожими в некотором отношении на пластмассу.

Каковы перспективы применения нанотехнологий?

Еще в 1986 году футуролог Эрик Дресслер нарисовал образ утопического будущего, в котором самореплицирующиеся (то есть воспроизводящие сами себя) нанороботы выполняют всю необходимую обществу работу. Эти крошечные устройства способны ремонтировать человеческий организм изнутри, делая людей виртуально бессмертными. Нанороботы могут также свободно перемещаться в окружающей среде, что делает их незаменимыми в борьбе с загрязнением этой среды.

Ожидается, что нанотехнологии обеспечат существенный прорыв в компьютерных технологиях, в медицине, а также и в военном деле. Например, медицинская наука разработала способы доставки лекарств непосредственно к раковым тканям в крошечных «нанобомбах». В будущем наноустройства могут «патрулировать» артерии, противодействуя инфекциям и обеспечивая диагностику заболеваний.

Американские ученые успешно использовали покрытые золотом «нанопули» для поиска и разрушения неоперабельных раковых опухолей. Ученые прикрепили нанопули к антителам, которые способны контактировать с раковыми клетками. Если подвергнуть «нанопули» действию излучения, близкого по частоте к инфракрасному, то их температура будет повышаться, что способствует уничтожению канцерогенных тканей.

Исследователи из финансируемого армией США Института армейских нанотехнологий в Кембридже (США) используют нанотехнологии для создания принципиально нового типа обмундирования. Их цель — создать ткань, которая может менять окраску, отклонять в сторону пули и энергию взрывной волны и даже склеивать кости.

Где применяются нанотехнологии в настоящее время?

Нанотехнологии уже используются при производстве жестких дисков персональных компьютеров, каталитических конвертеров — элементов двигателей внутреннего сгорания, теннисных мячей с длительным сроком службы, а также высокопрочных и одновременно легких теннисных ракеток, инструментов для резки металлов, антистатических покрытий для чувствительной электронной аппаратуры, специальных покрытий для окон, обеспечивающих их самоочистку.

Как создаются наноустройства?

В настоящее время используется два основных способа изготовления наноустройств.

Снизу вверх. Сборка наноустройств по принципу «молекула к молекуле» что напоминает сборку дома или автомобиля. Простые наночастицы, такие как используемые в косметике диоксид титана или оксид железа, могут быть получены с помощью химического синтеза.

Можно создавать наноустройства, перетаскивая отдельные атомы с помощью так называемого атомного силового микроскопа (либо сканирующего туннельного микроскопа), достаточно чувствительного для выполнения подобных процедур. Впервые эта методика была продемонстрирована специалистами IBM — с помощью сканирующего туннельного микроскопа они выложили аббревиатуру IBM, расположив соответствующим образом 35 атомов ксенона на поверхности никелевого образца.

Сверху вниз. Эта методика предполагает, что мы используем макроскопический образец и, к примеру, с помощью травления создаем на его поверхности обычные компоненты микроэлектронных устройств с параметрами, характерными для наномасштабов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночасттиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США), «было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма.

«Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», — говорит Кристен Кулиновски. — Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

newizv.ru

Что такое нанотехнологии: популярно и доступно

Что такое нанотехнологии: просто о сложном

На сайте британского журнала New Scientist основные сведения о нанотехнологиях представлены в очень удобном виде – в форме ответов на часто задаваемые вопросы

Что такое нанотехнология?

Под термином «нанотехнология» следует понимать комплекс научных и инженерных дисциплин, исследующих процессы, происходящие в атомном и молекулярном масштабе.

Нанотехнология предполагает манипуляции с материалами и устройствами настолько маленькими, что ничего меньшего быть не может. Говоря о наночастицах, обычно подразумевают размеры от 0,1 нм до 100 нм. Заметим, что размеры большинства атомов лежат в интервале от 0,1 до 0,2 нм, ширина молекулы ДНК примерно 2 нм, характерный размер клетки крови приблизительно 7500 нм, диаметр человеческого волоса — 80 000 нм.

Почему маленькие объекты приобретают столь специфические свойства на уровне наномасштабов?

К примеру, небольшие группы (их называют кластерами) атомов золота и серебра демонстрируют уникальные каталитические свойства, в то время как большие по размеру образцы обычно инертны. А наночастицы серебра демонстрируют отчетливо выраженные антибактериальные свойства и потому обычно используются в новых типах перевязочных материалов.

При уменьшении размера частиц возрастает отношение поверхности к объему. По этой причине наночастицы существенно легче вступают в химические реакции. В дополнение к этому на уровне менее 100 нм появляются эффекты квантовой физики. Квантовые эффекты могут влиять на оптические, электрические или магнитные свойства материалов непредсказуемым образом.

Маленькие кристаллические образцы некоторых веществ становятся прочнее, поскольку они просто достигают состояния, при котором не могут раскалываться так, как это происходит у больших кристаллов, когда на них воздействуют с усилием. Металлы становятся похожими в некотором отношении на пластмассу.

Каковы перспективы применения нанотехнологий?

Еще в 1986 году футуролог Эрик Дресслер нарисовал образ утопического будущего, в котором самореплицирующиеся (то есть воспроизводящие сами себя) нанороботы выполняют всю необходимую обществу работу. Эти крошечные устройства способны ремонтировать человеческий организм изнутри, делая людей виртуально бессмертными. Нанороботы могут также свободно перемещаться в окружающей среде, что делает их незаменимыми в борьбе с загрязнением этой среды.

Ожидается, что нанотехнологии обеспечат существенный прорыв в компьютерных технологиях, в медицине, а также и в военном деле. Например, медицинская наука разработала способы доставки лекарств непосредственно к раковым тканям в крошечных «нанобомбах». В будущем наноустройства могут «патрулировать» артерии, противодействуя инфекциям и обеспечивая диагностику заболеваний.

Американские ученые успешно использовали покрытые золотом «нанопули» для поиска и разрушения неоперабельных раковых опухолей. Ученые прикрепили «нанопули» к антителам, которые способны контактировать с раковыми клетками. Если подвергнуть «нанопули» действию излучения, близкого по частоте к инфракрасному, то их температура будет повышаться, что способствует уничтожению канцерогенных тканей.

Исследователи из финансируемого армией США Института армейских нанотехнологий в Кембридже (США) используют нанотехнологии для создания принципиально нового типа обмундирования. Их цель — создать ткань, которая может менять окраску, отклонять в сторону пули и энергию взрывной волны и даже склеивать кости.

Где применяются нанотехнологии в настоящее время?

Нанотехнологии уже используются при производстве жестких дисков персональных компьютеров, каталитических конвертеров — элементов двигателей внутреннего сгорания, теннисных мячей с длительным сроком службы, а также высокопрочных и одновременно легких теннисных ракеток, инструментов для резки металлов, антистатических покрытий для чувствительной электронной аппаратуры, специальных покрытий для окон, обеспечивающих их самоочистку.

Как создаются наноустройства?

В настоящее время используется два основных способа изготовления наноустройств.

Снизу вверх. Сборка наноустройств по принципу «молекула к молекуле» что напоминает сборку дома или автомобиля. Простые наночастицы, такие как используемые в косметике диоксид титана или оксид железа, могут быть получены с помощью химического синтеза.

Можно создавать наноустройства, перетаскивая отдельные атомы с помощью так называемого атомного силового микроскопа (либо сканирующего туннельного микроскопа), достаточно чувствительного для выполнения подобных процедур. Впервые эта методика была продемонстрирована специалистами IBM — с помощью сканирующего туннельного микроскопа они выложили аббревиатуру IBM, расположив соответствующим образом 35 атомов ксенона на поверхности никелевого образца.

Сверху вниз. Эта методика предполагает, что мы используем макроскопический образец и, к примеру, с помощью травления создаем на его поверхности обычные компоненты микроэлектронных устройств с параметрами, характерными для наномасштабов.

Представляет ли нанотехнология угрозу здоровью человека или окружающей среде?

Информации о негативном воздействии наночастиц не так уж и много. В 2003 г. в одном из исследований было показано, что углеродные нанотрубки могут повреждать легкие у мышей и крыс. Исследование 2004 г. показало, что фуллерены могут накапливаться и вызывать повреждения мозга у рыб. Но в обоих исследованиях были использованы большие порции вещества при необычных условиях. По словам одного из экспертов, химика Кристена Кулиновски (США),

«было бы целесообразно ограничить воздействие этих наночастиц, невзирая на то что в настоящее время информация об их угрозе человеческому здоровью отсутствует».

Некоторые комментаторы высказываются также относительно того, что широкое использование нанотехнологий может привести к рискам социального и этического плана. Так, к примеру, если использование нанотехнологий инициирует новую промышленную революцию, то это приведет к потере рабочих мест. Более того, нанотехнологии могут изменить представление о человеке, поскольку их использование поможет продлевать жизнь и существенно повышать устойчивость организма.

«Никто не может отрицать, что широкое распространение мобильных телефонов и интернета привело к огромным изменениям в обществе», — говорит Кристен Кулиновски. — Кто возьмет на себя смелость сказать, что нанотехнологии не окажут более сильного воздействия на общество в ближайшие годы?»

http://www.newizv.ru/lenta/83530/

Ну вот, как сейчас вижу, как кое-какие «снобы» презрительно усмехаются: мы, дескать, всё это давным-давно знаем!.. Ну, правильно! Эта статья – не для вас. Я, например, считаю, что нужно как можно чаще публиковать такого рода популярные статьи, делать радио- и телепередачи… Чтобы даже дотошные «домохозяйки» поняли (на своём уровне, конечно), что такое нанотехнологии и с чем их едят. Если человек захочет узнать побольше, он будет искать другие материалы, в соответствии со своими интересами. А тот, кто в этом «всё понимает», он может найти статьи в научных журналах, прочитать их, разобраться в них и, при случае, популярно рассказать об этом для «других», если захочет… Кстати, уже давно замечено, что крупный специалист обычно может немногими словами и весьма доходчиво рассказать о том, чем он занимается или интересуется. А вот недоучившиеся «образованцы» обычно не могут популярно и просто рассказать о сложных, но весьма увлекательных вещах. Они-то обычно и «гневаются» на тех, кто не может или «не хочет» понять их маловразумительные россказни… Впрочем, я увлёкся… ;-)))

www.nanonewsnet.ru

Что могут принести нанотехнологии человечеству? | Мир вокруг нас

Многие прочат нанотехнологиям великое будущее. Многие всерьез опасаются их, предполагая, что нанотехнологии могут оказаться джинном, выпущенным из бутылки. Итак, что же это такое — нанотехнологии, и чем они могут помочь человечеству? Что они нам несут — светлое будущее или глобальную угрозу?

Что такое нанотехнологии?

Нанотехнологии смело можно назвать фантастикой, которая стала реальностью. Человечество научилось уже управлять атомами. Современные технологии позволяют складывать из атомов различные устройства и механизмы, которые невозможно увидеть невооруженным глазом.

Наука, вобравшая в себя самые последние достижения в области изучения наномира, включающая в себя самые различные дисциплины, такие как биология, физика, химия и называется нанотехнологией.

Всем известно, что нанос в переводе с греческого означает слово «карлик». Нанометр (нм) — это ничтожно малая величина, составляющая одну миллиардную часть метра. Нанотехнологи работают с объектами, размеры которых находятся в диапазоне от 0,1 до 100 нм.

Нанотехнологии — первые шаги

Впервые, еще в 400 г. д.н.э., задумался о самых малых частицах, из которых состоит вещество, греческий философ Демокрит. Именно он ввел понятие атом, что означает нераскалываемый.

В 1905 году великий Эйнштейн высказал предположение, что размер молекулы сахара составляет 1 нанометр. В 1931 году немецкие физики создали электронный микроскоп, который, наконец-то, позволил увидеть человеку нано-объекты.

В 1974 году японский физик Норио Танигучи предлагает назвать механизмы размером менее одного микрона словом нанотехнологии. В 1981 году германские физики создали микроскоп, с помощью которого удалось рассмотреть отдельные атомы. В 1986 году футуролог Эрк Дрекслер публикует книгу, в которой предсказывает огромное будущее нанотехнологиям. С тех пор нанотехногии получили широкую общественную огласку.

В 1998 году голландский физик Сеез Деккер находит уже практическое применение нано-объектам. Он создает транзистор на основе нанотехнологий.

Как видим, как наука нанотехнологии развиваются очень стремительно. Трудно даже предположить, какие перспективы открываются перед человечеством благодаря нанотехнологиям.

Практическое применение

Нанотехнология в настоящее время еще не нашла широкого практического применения. Но смею вас уверить, это дело времени. В самом ближайшем будущем мы будем пользоваться вещами, изготовленными с помощью нанотехнологий. Уже сейчас можно говорить об изделиях, прошедших путь от лаборатории до завода.

Современные изделия, изготовленные с помощью нанотехнологий, имеют в своем составе углеродные нанотрубки, которые, в свою очередь, являются основой для других нанопродуктов, выпускаемых в настоящее время.

Что представляют собой углеродные нанотрубки? Они были открыты в 1991 году и представляют собой протяженные цилиндрические структуры диаметром от одного до нескольких десятков нанометров и длиной несколько сантиметров. Оказалось, что они обладают удивительными свойствами. Благодаря этим свойствам им было найдено множество применений. К примеру, их можно использовать в электронике, компьютерной индустрии, медицине и даже в промышленности.

Как можно применить нанотехнологии в медицине? Благодаря своим свойствам наноматериалы могут использоваться для замены тканей человека. Оказывается, клетки организма распознают такие материалы как свои. Даже сейчас достигнуты успехи в изготовлении наноматериала, который может имитировать костную ткань.

Микроскопические размеры наноматериалов позволяют использовать их в качестве капсул, с помощью которых осуществляется доставка лекарственных средств в нужные места организма. Их можно использовать в качестве фильтра жидкостей организма от вредных веществ и вирусов. Сейчас большое распространение получают миниатюрные устройства, помещаемые внутрь организма для диагностики и лечебных целей.

Перспективы нанотехнологий

Немного из области фантастики.

В медицине планируется создание молекулярных роботов, которые могли бы лечить организм, находясь внутри него. А что? Очень удобно.

В промышленности: предметы потребления могут создаваться непосредственно из атомов и молекул. Посредством перемены мест атомов и молекул можно будет изготовить любой предмет!

В биологии возможно «внедрение» в различные организмы на уровне атомов. Что это нам даст? Восстановление вымерших видов животных и даже создание новых существ, «биороботов».

И, наконец, в геронтологии. Бессмертие станет возможным за счет внедрения в организм молекулярных роботов, которые будут очищать организм и устранять болезни еще в самом начале их зарождения.

Прогнозы на будущее

Как видим, в недалеком будущем нанотехнология может стать одной из ведущих отраслей современной науки. Перспективы — самые радужные. Некоторые рассматривают ее как панацею от всех бед, другие грозят бедами при неосторожном ее использовании.

Тем не менее нанотехнология — это уже настоящее. Остается только надеяться, что люди разумно распорядятся ее потенциалом и направят ее энергию во благо человечества.

shkolazhizni.ru

Нанотехнологии: что это такое - World Web War

В современном научном языке приставка «нано» служит для образования наименования дольных единиц физических величин, равных одной миллиардной исходных единиц. Например, нанометр — это одна миллиардная часть метра, т.е. 1 нанометр (нм) = 0,000 000 001 м.

Учёные и инженеры договорились о точном значении этой приставки в 1960 г., произведя её от слова «нанос» (в переводе с греческого «карлик»), которое употребляется уже тысячи лет. Соответственно под нанотехнологиями понимают технологии, имеющие дело с чем-то карликовым, очень маленьким, составляющим всего лишь миллиардные доли чего-то, скажем миллиардные доли метра.

С размером в 0,001 м, или миллиметром, часто встречаются в повседневной жизни. Размер булавочной головки чуть больше 1 мм. Но по сравнению с нанометром миллиметр огромен, он равен целому миллиону нанометров. Инженеры уже давно привыкли иметь дело с тысячными долями миллиметра — микрометрами (мкм), или микронами: 1 мкм = 0,000 001 м = 1000 нм.

Диаметр человеческого волоса — 1/20 мм, т.е. 50 мкм. Цветочная пыльца состоит из пылинок размером несколько микронов, которые незаметны невооруженным глазом.

При анализе крови человека лаборанты рассматривают образцы под микроскопом и в первую очередь подсчитывают количество красных кровяных клеток, имеющих форму дисков диаметром несколько микронов.

Enlarge

Красные кровяные клетки

А как часто сталкиваются с размерами меньше микрона? Все видели радугу на небе или в брызгах воды фонтана. Цвета в радуге меняются от красного до фиолетового. Физика учит, что они различаются длиной световой волны — от 0,44 мкм (красный) до 0,7 мкм (фиолетовый).

Как же представить себе один нанометр? Надо изготовить миниатюрный металлический стерженёк длиной 1 мкм, поместить под микроскоп и с помощью какого-нибудь хитроумного приспособления разрезать пополам. Одну половинку выкинуть, другую снова разрезать пополам. Возможно ли, хотя бы теоретически, повторить процедуру десять раз подряд? Исходный стерженёк состоит из атомов, и после разрезания его размер никак не станет меньше расстояния между атомами. Для большинства металлов расстояние между атомами составляет 0,1—0,7 нм.

Единица измерения микрон обозначается μm. Из-за того, что вводить греческие буквы при наборе текстов на русском или английском языке неудобно, наиболее употребительно неофициальное обозначение um. Если у греческой буквы μ («мю») стереть нижний хвостик, получится как раз буква латинского алфавита u.

Таким образом, на стерженьке длиной 1 мкм уместится всего несколько тысяч слоёв атомов металла. После первого деления стерженька число слоёв уменьшится примерно вдвое, после второго — примерно вчетверо, после десятого — примерно в 1 тыс. раз, т.е. после десяти делений (если бы удалось их проделать) длина стерженька стала бы около 1 нм и стерженёк состоял бы всего из нескольких (меньше десяти) слоёв металла. Следовательно, нанометр — единица, удобная для измерения объектов, состоящих из небольшого числа атомов.

Теперь вновь вернёмся к слову «нанотехнологии». На самом деле приставка «нано» в этом слове подчёркивает не размеры объектов, а их тип. Нанотехнологии нацелены на индивидуальную работу с отдельными атомами.

Обычные технологии, например обработка детали на токарном станке, варка стекла или изготовление бетонных конструкций, создают предметы, т.е. собирают атомы в нужные скопления, манипулируя огромными плохо управляемыми группами атомов.

Нанотехнологии тесно связаны с информатикой. Во-первых, к необходимости создания нанотехнологий пришли после постановки Р. Фейнманом в своём докладе задачи компактного хранения информации. Во-вторых, нанотехнологии обещают радикально изменить как инструменты обработки информации (компьютеры), так и методы их использования. В-третьих, развитие нанотехнологий невозможно без применения методов информатики.

Первые лабораторные успехи

Ещё философы Древней Греции догадались, что вещество состоит из атомов. Затем это было доказано теоретически и экспериментально, но ни один человек не мог поклясться: «Я видел атом!». Различить отдельный атом с помощью какого-либо оптического прибора в принципе невозможно. Оптические приборы работают со световыми колебаниями.

Их разрешающей способностью является расстояние между двумя объектами, на котором они ещё отличимы друг от друга (расстояние не превышает длины волны световых колебаний). Длина волны видимого света около 500 нм, что в тысячи раз превышает расстояние между атомами. Для «подглядывания» за атомами нужны более частые колебания. С точки зрения современной физики электрон не только частица, но и волна, колебание. Длина этой волны меньше расстояния между атомами, посредством электронных волн в микроскоп с «электронным светом» можно увидеть отдельный атом (отличить его от других атомов). В 80-х гг. создали такой микроскоп, названный сканирующим туннельным микроскопом (СТМ).

Основная идея состоит в том, чтобы в вакууме перемещать над поверхностью твёрдого тела кончик острой иглы, к которой приложено напряжение. Если расстояние между образцом и кончиком иглы достаточно мало, то электроны туннелируют (перескакивают) с острия иглы на образец, образуя ток туннелирования. Водя иглой по образцу и измеряя ток, исследователи получают возможность «нанести на карту» расположение микроскопических (атомных размеров) «холмов» и «долин» на поверхности образца.

В 1986 г. изобретатели СТМ были удостоены Нобелевской премии. Сканирующий туннельный микроскоп, умещающийся (если без вакуумной камеры) на ладони, имеет разрешение по вертикали детали размером в 0,1 A (где А — это сторона куба), или, иначе говоря, одну десятую диаметра атома водорода. Разрешающая способность сканирующего острия шириной всего в несколько атомов допускает разрешение детали горизонтальной плоскости размером не более 2 A (где А — это сторона куба).

Учёным уже удалось изготовить остриё шириной в один атом. Наконечник иглы делается в форме пирамиды, предпоследний и последний слои состоят из трёх и одного атомов соответственно.

СТМ позволяет не только видеть, но и перемещать атомы. Например, в 1980 г. сотрудники фирмы IBM нанесли на никелевую подложку 35 атомов ксенона, выложив из них название своей компании.

Неизбежность разделения труда в нанотехнологиях


Манипулируя отдельными атомами и молекулами, в принципе можно создавать новые устройства разных размеров. От микроскопических, неразличимых для невооружённого глаза, до устройств планетарного масштаба, по величене превосходящих Землю. Даже самые крошечные устройства будут содержать огромное количество атомов. Чтобы выполнить устройство с помощью нанотехнологии, каждый атом придётся переместить на отведённое ему место.

Мысленно проведём эксперимент. Для этого потребуется простейшая фигура — кубик из атомов одного типа. Сколько атомов и на какое расстояние придётся переместить, чтобы собрать кубик с ребром 5 мкм?

1 мкм — 1000 нанометров, или 10 тыс. ангстрем. Если принять, что расстояние между соседними атомами в кубике 0,5 A°, то число атомов на ребре кубика будет равно 100 001, а общее число атомов в кубике — 100 001 x 100 001 x 100 001 ≈ 10 в 15 степени.

«Любой материальный предмет — это всего лишь скопление атомов в пространстве. То, как эти атомы собраны в структуру, определяет, что это будет за предмет». Станислав Лем

Попробуем собрать кубик, используя сканирующий туннельный микроскоп. Предположим, что на перемещение каждого атома понадобится одна секунда, тогда на всю сборку уйдёт около 30 млн лет. Такую технологию трудно назвать практически применимой. Два СТМ позволили бы сделать эту работу вдвое быстрее, а десять СТМ, к сожалению, не удалось бы задействовать одновременно — вокруг собираемого кубика они не разместятся!

Чтобы сложить кубик за разумное время (например, за несколько часов, минут или секунд), нужно либо повысить скорость перемещения атомов, либо использовать большое количество одновременно работающих «сборщиков» (универсальные наномашины, или самоусовершенствующиеся микророботы), которые настолько миниатюрны, что не помешают друг другу.

Во сколько раз надо ускорить перемещение атомов, чтобы один «сборщик» выполнил всю работу за 10 с? В этом случае он за 1 с должен перемещать одну десятую от общего числа атомов. Пусть каждый атом необходимо передвинуть на расстояние 10 мкм, тогда за 1 с «сборщик» произведёт 10 14 перемещений по 10 мкм, т.е. общее перемещение составит 10 в 15 степени мкм = 10 в 9 степени м = 10 в 6 степени км > 300 000 км.

Таким образом, за 1 с мельчайшие сдвиги атомов, производимые «сборщиком», в целом составят расстояние 1 млн километров. Чтобы подобного достичь, он должен временами двигаться в несколько раз быстрее скорости света, что противоречит принципу относительности.

При создании устройств размерами в миллиметры или метры по принципам нанотехнологии трудности усугубятся. Так, расстояния, на которые придётся перемещать атомы, при переходе от микронов к миллиметрам и метрам увеличатся в тысячу и миллион раз соответственно, а число атомов возрастёт в 10 в 9 степени и 10 в 18 степени раз.

Следовательно, создание продукции в нанотехнологии возможно, только когда «пункты сборки» распределены по всей поверхности (объёму) создаваемого устройства и работают параллельно.

Чтобы представить такой параллелизм, вообразим повреждённый муравейник и его обитателей, занятых починкой. Толпы муравьёв работают не мешая друг другу. По сравнению с размером муравейника размер любого муравья крайне мал. Хотя отдельные муравьи трудятся относительно независимо, их совместная работа подчинена единой цели.

Осуществимы ли нанотехнологии?

Пример со сборкой кубика наводит на грустные мысли. Неужели основные физические принципы и законы доказывают практическую неосуществимость нанотехнологий, подобно тому как принцип относительности говорит о невозможности полёта к ближайшей звезде на выходные, а принцип сохранения энергии — о невозможности постройки вечного двигателя?

Один из теоретиков нанотехнологий, американский учёный Эрик Дрекслер, приводит следующий пример. Если бы человечество владело нанотехнологиями, медики могли бы создать устройство размером в несколько микрон, состоящее из мешка, лап с присосками и хобота. Его вводили бы в кровь человека, и устройство отыскивало бы микробы, присасывалось к ним и через хобот впрыскивало антибиотик, запасённый в мешке. Лечить многие болезни стало бы легче.

Наноробот с клеткой крови

Но откуда известно, что нанотехнологии, в отличие от вечного двигателя, вполне возможны? Реально ли создание «карликовых» устройств, не противоречит ли это каким-либо физическим законам? Ответим на вопрос, рассмотрев капельку крови человека под микроскопом. В крови плавают и охотятся за микробами по сути точно такие же «устройства», которые называются антителами. Они появляются в организме по генетическому коду (точный план), шаг за шагом, молекула за молекулой. Всё живое на Земле, от бактерии и простейшего гриба до человека и секвойи, создано с помощью процессов, манипулирующих небольшими группами атомов — аминокислотами и белками. То есть в каком-то смысле можно считать, что нанотехнологии уже работают в живой природе.

К настоящему времени на принципах нанотехнологий разработаны конструкции из сотен и даже тысяч атомов, но среди них пока ещё нет ни одной, сравнимой по сложности с живой клеткой. Однако само существование жизни и биологических процессов доказывает практическую осуществимость нанотехнологий.

Осуществимы ли нанотехнологии?

Любые самовоспроизводящиеся объекты, будь то бактерии в человеческом теле, водоросли в пруду, сорняки на вспаханном поле, закваска в тесте или вирусы в компьютерной сети, быстро размножаются, преобразуя окружающую среду часто нежелательным для человека или даже катастрофическим образом. Одна из таких катастроф описана в известной немецкой сказке «Горшок каши», когда горшочек всё варил и варил кашу, покрыв в конце концов ею весь город.

Но действительность может оказаться страшнее любой сказки. Учёные, разрабатывающие подходы к нанотехнологиям, уже сейчас задумываются над опасностью выхода из-под контроля самовоспроизводящихся (или даже самоусовершенствующихся) микророботов. Гипотетическая катастрофа получила название «серая слизь» — так обозначают неконтролируемый процесс переработки почвы, воды, воздуха микроскопическими роботами, при котором Земля покрывается неисчислимой массой «сборщиков».

Подобное может произойти буквально за несколько дней. Представьте себе выброшенного волной на песчаный морской берег самовоспроизводящегося робота размером 10 мкм. Пусть он состоит из атомов кремния, кислорода, водорода, азота, углерода (и некоторых металлов, соли которых растворены в морской воде). При попадании на солнечный свет микроробот начинает самовоспроизводиться (при условии, что рядом есть запас нужных атомов).

Если процесс «клонирования» занимает полчаса, то к концу первого дня на пляже вырастет 20 поколений роботов общей численностью около миллиона штук и общим объёмом 1 мм3.

К концу второго дня объём их составит 1 дм3, к концу третьего — 1000 м3, а к концу четвёртого дня, если хватит песка, — 1 км3.

Весь пляж превратится в «серую слизь».

Теоретики нанотехнологий уже сейчас начали вырабатывать принципы устройства микророботов-«сборщиков», позволяющие избежать катастрофы «серой слизи». Эти принципы похожи на знаменитые законы робототехники, сочинённые писателем-фантастом А. Азимовым. Только они не выдуманы писателями, а изложены учёными для практических целей.

  • Принцип 1. «Сборщик» должен начинать самовоспроизводство только по команде извне.
  • Принцип 2. Запрещается разрабатывать процессы сборки, идущие с выделением энергии.
  • Принцип 3. Для воспроизводства должны быть необходимы вещества, не встречающиеся в природе.

Смелые прогнозы

Уже найдено много интереснейших способов применения нанотехнологий, и количество прогнозов увеличивается с каждым днём. Приведём только три описания технических устройств завтрашнего дня.

Механический нанокомпьютер, подобный компьютеру Бэббиджа, способный работать с частотами в сотни гигагерц. Этот компьютер будет состоять из мельчайших деталей, каждая из
которых образована всего несколькими тысячами атомов.

Сверхпрочные саморемонтируемые материалы, позволяющие построить башню с лифтом для подъёма полезных грузов в космос. По соединённым углеродным трубкам в стенах такой башни должны ползать «ремонтники», обнаруживая и устраняя повреждения.

Микроскопическая «подводная лодка», плавающая в крови человека и способная транспортировать кислород из лёгких в ткани и углекислый газ обратно. Если полстакана таких искусственных кровяных телец ввести человеку в кровь, то он сможет обходиться без воздуха несколько часов.

Нанороботы обогащают ткани

Нанотехнологии немыслимы без компьютеров, коммуникаций, программирования и других элементов информатики. Роботы-«сборщики» будут получать и обрабатывать информацию извне, а также обмениваться информацией друг с другом.

Мощности передатчиков и чувствительности приёмников микророботов хватит только для связи на короткие расстояния, так что роботы, скорее всего, станут ретранслировать информацию, образуя коммуникационные сети. Микророботов и программы для них придётся создавать на самой современной технике: сначала на обычных электронных компьютерах, а впоследствии и на нанокомпьютерах.

Увидит ли сегодняшнее поколение результаты внедрения нанотехнологий?

Практическое применение нанотехнологий не за горами. Сегодня за 4 тыс. долларов продаётся 500-страничный отчёт, в котором для бизнесменов и государственных деятелей даются рекомендации по инвестициям в нанотехнологии.

Согласно этому отчёту, первое промышленное применение нанотехнологий произойдёт уже в 10-х гг. XXI в., а спустя ещё десятилетие нанотехнологии образуют заметный сектор в мировой экономике.

Систематическое изложение идей нанотехнологии было опубликовано в середине 80-х гг. XX в. Э. Дрекслером в книге «Машины творения». Основная идея заключалась в разработке и массовом производстве специальных роботов-«сборщиков», способных по заданной программе собирать новые конструкции, в том числе и самих себя. Человек сначала использовал простейшие инструменты для создания более сложных, а затем после их усовершенствования возникали технологии, позволяющие выпускать автомобили и самолёты, компьютеры и телевизоры и многие другие полезные вещи.

worldwebwar.ru

Что такое нанотехнология?

Нанотехнологии — это технологии, оперирующие величинами порядка нанометра.

Приведенные здесь в качестве эпиграфа строки взяты из фантастического произведения и пока не могут претендовать на серьезное отношение со стороны простого человека. Но для современного специалиста по нанотехнологиям, лемовские фантазии уже не утопия, а повседневная работа.

Для понятия нанотехнология, пожалуй, не существует исчерпывающего определения, но по аналогии с существующими ныне микротехнологиями следует, что нанотехнологии — это технологии, оперирующие величинами порядка нанометра. Это ничтожно малая величина, в сотни раз меньшая длины волны видимого света и сопоставимая с размерами атомов. Поэтому переход от «микро» к «нано» — это уже не количественный, а качественный переход — скачок от манипуляции веществом к манипуляции отдельными атомами.

Когда речь идет о развитии нанотехнологий, имеются в виду три направления:

изготовление электронных схем (в том числе и объемных) с активными элементами, размерами сравнимыми с размерами молекул и атомов;

разработка и изготовление наномашин, т.е. механизмов и роботов размером с молекулу;

непосредственная манипуляция атомами и молекулами и сборка из них всего существующего.

Реализация всех этих направлений уже началась. Почти десять лет назад были получены первые результаты по перемещению единичных атомов и сборки из них определенных конструкций, разработаны и изготовлены первые наноэлектронные элементы. По оценкам специалистов, уже на рубеже следующего века начнется производство наноэлектронных чипов, например, микросхем памяти емкостью в десятки гигабайт.

ВОЗМОЖНОСТИ НАНОТЕХНОЛОГИИ

Нанотехнологический контроль изделий и материалов, буквально на уровне атомов, в некоторых областях промышленности стал обыденными делом. Реальный пример — DVD-диски, производство которых было бы невозможно без нанотехнологического контроля матриц.

Существующие способы осаждения примесей в полупроводниках (эпитаксии) по литографическим шаблонам уже практически приблизились к своему пределу не только в смысле размеров, но и топологически. Дело в том, что нынешние технологии фотолитографии позволяют изготовлять только планарные структуры — когда все элементы и проводники расположены в одной плоскости. А это накладывает существенные ограничения схемотехнику: наиболее прогрессивные схемные решения не могут быть осуществлены по такой технологии.

В частности, таким образом невозможно воспроизвести нейронные схемы, на которые возлагаются большие надежды. В то же время, сейчас активно развиваются нанотехнологические методы, позволяющие создавать активные элементы (транзисторы, диоды) размером с молекулу и формировать из них многослойные трехмерные схемы. По видимому, именно микроэлектроника будет первой отраслью, где «атомная сборка» будет осуществлена в промышленных масштабах.

Хотя сейчас в нашем распоряжении и имеются средства для манипуляций отдельными атомами, вряд ли их можно «напрямую» применять для того, чтобы собрать что-либо практически необходимое: уже хотя бы только из-за количества атомов, которые придется «монтировать».

Однако возможностей существующих технологий уже достаточно, чтобы соорудить из нескольких молекул некие простейшие механизмы, которые, руководствуясь управляющими сигналами извне (акустическими, электромагнитными и пр.), смогут манипулировать другими молекулами и создавать себе подобные устройства или более сложные механизмы.

Те, в свою очередь, смогут изготовить еще более сложные устройства и т.д. в конце концов этот экспоненциальный процесс приведет к созданию молекулярных роботов — механизмов, сравнимых по размерам с крупной молекулой и обладающих собственным встроенным компьютером.

Перспективы

За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека

МЕДИЦИНА

Создание молекулярных роботов-врачей, которые «жили» бы внутри человеческого организма, устраняя все возникающие повреждения, или предотвращали бы возникновение таковых, включая повреждения генетические. Прогнозируемый срок реализации — первая половина XXI века.

ГЕРОНТОЛОГИЯ

Достижение личного бессмертия людей за счет внедрения в организм молекулярных роботов, предотвращающих старение клеток, а также перестройки и «облагораживания» тканей человеческого организма. Оживление и излечение тех безнадежно больных людей, которые были заморожены в настоящее время методами крионики. Прогнозируемый срок реализации: третья — четвертая четверти XXI века.

ПРОМЫШЛЕННОСТЬ

Замена традиционных методов производства сборкой молекулярными роботами предметов потребления непосредственно из атомов и молекул. Вплоть до персональных синтезаторов и копирующих устройств, позволяющих изготовить любой предмет. Первые практические результаты могут быть получены в начале XXI века.

СЕЛЬСКОЕ ХОЗЯЙСТВО

Замена «естественных машин» для производства пищи (растений и животных) их искусственными аналогами — комплексами из молекулярных роботов. Они будут воспроизводить те же химические процессы, что происходят в живом организме, однако более коротким и эффективным путем. Например, из цепочки «почва — углекислый газ — фотосинтез — трава — корова — молоко» будут удалены все лишние звенья.Останется «почва — углекислый газ — молоко (творог, масло, мясо — все, что угодно)». Стоит ли говорить о том, что подобное «сельское хозяйство» не будет зависеть от погодных условий и не будет нуждаться в тяжелом физическом труде. А производительности его хватит, чтобы решить продовольственную проблему раз и навсегда. По разным оценкам, первые такие комплексы будут созданы во второй — четвертой четвертях XXI века.

БИОЛОГИЯ

Станет возможным «внедрение» в живой организм на уровне атомов. Последствия могут быть самыми различными — от «восстановления» вымерших видов до создания новых типов живых существ, биороботов. Прогнозируемый срок реализации: середина XXI века.

ЭКОЛОГИЯ

Полное устранение вредного влияния деятельности человека на окружающую среду. Во-первых, за счет насыщения экосферы молекулярными роботами-санитарами, превращающими отходы деятельности человека в исходное сырье, а во-вторых, за счет перевода промышленности и сельского хозяйства на безотходные нанотехнологические методы. Прогнозируемый срок реализации: середина XXI века.

ОСВОЕНИЕ КОСМОСА

По-видимому, освоению космоса «обычным» порядком будет предшествовать освоение его нанороботами. Огромная армия роботов-молекул будет выпущена в околоземное космическое пространство и подготовит его для заселения человеком — сделает пригодными для обитания Луну, астероиды, ближайшие планеты, соорудит из «подручных материалов» (метеоритов, комет) космические станции. Это будет намного дешевле и безопаснее существующих ныне методов.

КИБЕРНЕТИКА

Произойдет переход от ныне существующих планарных структур к объемным микросхемам, размеры активных элементов уменьшаться до размеров молекул. Рабочие частоты компьютеров достигнут терагерцовых величин. Получат распространение схемные решения на нейроноподобных элементах. Появится быстродействующая долговременная память на белковых молекулах, емкость которой будет измеряться терабайтами. Станет возможным «переселение» человеческого интеллекта в компьютер. Прогнозируемый срок реализации: первая — вторая четверть XXI века.

РАЗУМНАЯ СРЕДА ОБИТАНИЯ

За счет внедрения логических наноэлементов во все атрибуты окружающей среды она станет «разумной» и исключительно комфортной для человека. Прогнозируемый срок реализации: после XXI века.

Элементы информационных систем

Это позволяет уменьшить размеры одного транзистора приблизительно до 10 нм, а рабочие частоты увеличить до порядка 1012 Гц.

ВВЕДЕНИЕ

Разработанные в последние годы наноэлектронные элементы по своей миниатюрности, быстродействию и потребляемой мощности составляют серьезную конкуренцию традиционным полупроводниковым транзисторам и интегральным микросхемам на их основе как главным элементам информационных систем.

Уже сегодня техника вплотную приблизилась к теоретической возможности запоминать и передавать 1 бит информации с помощью одного электрона, локализация которого в пространстве может быть задана одним атомом. Это позволяет уменьшить размеры одного транзистора приблизительно до 10 нм, а рабочие частоты увеличить до порядка 1012 Гц.

КВАНТОВЫЕ ОСНОВЫ НАНОЭЛЕКТРОНИКИ

При переходе к наномасштабам, на первый план выходят квантовые свойства рассматриваемых объектов. С позиций квантовой механики электрон может быть представлен волной, описываемой соответствующей волновой функцией. Распространение этой волны в наноразмерных твердотельных структурах контролируется эффектами квантового ограничения, интерференцией и возможностью туннелирования через потенциальные барьеры.

Специфическим проявлением квантового ограниче-ния является одноэлектронное туннелирование в условиях кулоновский блокады. Рассмотрим иллюстрируемый на следующем рисунке пример прохождения электроном структуры металл-диэлектрик-металл.

Первоначально граница раздела между диэлектриком и металлом электрически нейтральна. При приложении к металлическим областям потенциала на этой границе начинает накапливаться заряд. Это продолжается до тех пор, пока его величина не окажется достаточной для отрыва и туннелирования через диэлектрик одного электрона. После акта туннелирования система воз-вращается в первоначальное состояние. При сохранении внешнего приложенного напряжения все повторяется вновь. Так перенос заряда в структуре осуществляется порциями, равными заряду одного электрона.

НАНОЭЛЕКТРОННЫЕ ЭЛЕМЕНТЫ

Одними из первых, появились элементы на резонансном туннелировании, представляющие собой двухбарьерный диод на квантовых ямах, у которых потенциал ям и соответствующие резонансные условия контролируются третьим электродом.

Туннельный транзистор, состоит из двух последовательно включенных туннельных переходов. Туннелирование индивидуальных электронов контролируется ку-лоновской блокадой, управляемой потенциалом, приложенным к активной области транзистора в его середине между двумя прослойками твердого диэлектрика. Если представить один бит как наличие или отсутствие одного электрона, то схема памяти емкостью 100 Гб разместится на кристалле, площадью всего 6 см2.

В 1993 г. было разработано новое семейство цифровых переключающих приборов на атомных и молекулярных шнурах. На этой основе разработаны логические элементы НЕ-И и НЕ-ИЛИ. Размер такой структуры ~ 10 нм, а рабочая частота ~ 10 12 Гц.

Квантовые точки

ОБЩАЯ ИНФОРМАЦИЯ

Полупроводниковые квантовые точки представляют собой размерами порядка нанометра, гигантские молекулы, состоящие из 103 — 105 атомов, созданные на основе обычных неорганических полупроводниковых материалов Si, InP, CdSe и т.д. они больше обычных для химии традиционных молекулярных скоплений (~ 1 нм при содержании не больше 100 атомов), но меньше структур порядка нанометра по размерам, которые производятся современными литографическими средствами электронной промышленностью.

Аналогия с атомной физикой (но со сжатием энергетического масштаба в 10000 раз!) позволяет изучать «атомоподобную физику» используя магнитные поля, доступные в лабораторных условиях.

КВАНТОВЫЕ ТОЧКИ МОГУТ БЫТЬ ПОЛУЧЕНЫ ПОСРЕДСТВОМ

  • колоидальных химических средств
  • управляемым затвердеванием в процессе эпитаксического роста
  • флуктуаций размера в условных квантовых колодцах
  • нанопроизводство

КОЛЛОИДАЛЬНЫЕ ТОЧКИ

Коллоидальные точки являются свободными, т.е. они не погребены внутри другого полупроводника. Таким образом, они свободны от натяжения. Они закрыты органическими молекулами, используемыми для предотвращения свертывания маленьких точек в процессе их роста. Размер этих молекул можно контролировать в процессе роста и их форма приближается к сферической. Коллоидальные технологии были развиты достаточно глубоко в основном для ионных систем II — IV (CdS, CdSe) и недавно для полупроводников III — V групп (InP, GaP, InAs). В связи с совершенной универсальностью размеров, можно проводить спектроскопические исследования высокого разрешения. Последние выявили новые физические эффекты, включая значительное расширение взаимодействия электронно-дырочного обмена применительно к соответствующим массивным твердым телам, передача заряда в возбужденном состоянии, необычное поведение (в отношении масс) под давлением (например, задержанные фазовые переходы), и определение до 10 возбужденных состояний электронно-дырочных переходов. Теперь стала возможной замена органической протравленную оболочку вокруг этих точек неорганическими полупроводниками — например: CdSe (ZnS) — таким образом производя структуры «ядро — оболочка». Были созданы массивы каллоидальных точек. Более того входные структуры запрещающие загрузку каллоидальных квантовых точек носителями недавно стали возможны для точек размерами 6нм.

УПРАВЛЯЕМЫЕ ЗАТВЕРДЕВАНИЯ

Управляемое затвердевание пленки материала А выращенного на субстрате созданном из материала В производит острова А, т. к . разница между атомными размерами А и В достаточно велика. Примеры А/В пар включают InAs|GaAs и InP|GaInP. Если остановить металлоорганическое химическое выпаривание или молекулярно-лучевой эпитоксический рост сразу перед объединением островов, можно получить удивительно универсальный набор точек материала А.

Формы этих точек сильно разнятся. Они появляются в виде пирамид, но накрапление изменяет форму и состав. Обычно может получиться только маленькое число размеров. Спектроскопические и транспортные изменения этих точек раскрыли мультиэкситонные переходы (несколько электронов и несколько дырок распадаются вместе). Также были обнаружены эффекты Кулоновской блокады, где загрузка точки электронами вызывает Кулоновское отталкивание электронов от других электронов так электронное сложение требует повышенного входного напряжения. Вертикальное выравнивание самособирающихся точек в настоящее время обещает заманчивые перспективы для создания сетки точек и приложения устройств.

ФЛУКТУАЦИИ РАЗМЕРОВ В КВАНТОВЫХ ЯМАХ

Флуктуации размеров в квантовых ямах нарушает периодичность в двух расширенных направлениях, таким образом вызывая образование точки. Управление формой и размером достаточно сложно, но качество восприимчивости такое хорошее, что можно наблюдать чрезвычайно точные спектроскопические черты. Фактически многие из недавних достижений одноточечной спектроскопии и наноядерного магнитного резонанса или нанофотолюменесценции были сфокусированы на этом типе точек.

НАНОПРОИЗВОДСТВО

Нанопроизводство квантовых точек идеально для изучения транспортных свойств таких как наблюдение перехода электронов поодиночке в точки. Это раскрывает красивую последовательность переходов перекомпановывая атомную физику в ее правиле отбора, но на энергетическом масштабе миллиэлектронвольт (вместо приблизительно 10эВ). Аналогия с атомной физикой (но со сжатием энергетического масштаба в 10000 раз!) позволяет изучать «атомоподобную физику» используя магнитные поля, доступные в лабораторных условиях.

Квантовые точки позволяют изучать обычные квантовые структуры, о которых можно прочесть в учебнике, в лабораторных условиях (например, «частица в ящике») на максимальном пределе нулевого измерения (т.е. никакой периодичности), и изучать необычное поведение, на чем могут быть основаны новые концепции различных устройств. В числе последних, высокоэкономичный квантовый лазер, диоды излучающие свет, ячейки солнечных батарей и одноэлектронные транзисторы. Таким образом эта область интересна теоретикам квантовой физики, экспериментаторам в области электроскопии, передачи информации и, вероятно, специалистам в области оптоэлектроники. Фактически, сегодня сложно найти конференцию по физике, химии или материаловедения одним из ключевых вопросов которых не являлся бы вопрос о квантовых точках.

nlo-mir.ru

где учиться, зарплата, плюсы и минусы

Важные качестваЗарплата на 26.03.2020

От греч. греч. nanos — карлик. Профессия подходит тем, кого интересует физика, математика и химия (см. выбор профессии по интересу к школьным предметам).

Нанотехнолог — специалист по нанотехнологиям, учёный, который исследует материалы на молекулярном и атомарном уровне и создаёт объекты из компонентов, обладающих наноразмерами.

Приставка нано- используется при обозначении физических величин и указывает на размер, равный одной миллиардной доле какой-либо единицы. Например, одна миллиардная метра называется нанометром.

В других случаях приставка нано– означает использование мельчайших компонентов размером  от 1 до 100 нанометров (нм).

Читайте также:

Особенности профессии

Нанотехнологи создают новые материалы с чётко заданной атомарной структурой. Контролируемые манипуляции отдельными молекулами и атомами для «сборки» таких материалов – это и есть нанотехнология.

Работа с мельчайшими элементами возможна, благодаря мощным электронным микроскопам высокого разрешения. Таким, как сканирующий атомно-силовой микроскоп (АСМ), растровый электронный микроскоп (РЭМ).

К нанотехнологиям относят также разработку и создание электронных схем, основанных на элементах  размером с молекулу или атом. Разработку роботов (наномашин, нанороботов) размером с молекулу. А также методы исследования таких объектов.

Таким образом, нанотехнология — междисциплинарная область, находящаяся на стыке науки (фундаментальной и прикладной) и техники.

Почему это направление стало таким актуальным в последнее время? Дело в том, что нанотехнология — это наиболее глубинное и направленное вмешательство в материю на сегодняшний день. Это качественно новый уровень точности.

Принцип создания наноматериалов (манипуляции отдельными атомами) позволяет получать такие свойства, которых невозможно добиться традиционным способом. Потому что традиционный способ (проведение химических реакций) — это работа с порциями вещества, состоящими из миллиардов атомов.

Словарь

Наноматериал — матери

www.profguide.io

Что такое нанотехнологии и как они применяются в промышленности и медицине

Современные разработки в сфере нанотехнологий в будущем позволят создать роботов столь малого размера, что их можно будет запускать в кровоток человека. «Детали» такого робота будут одномерными и чем меньше, тем прочнее. Старший научный сотрудник ИБХФ РАН Дмитрий Квашнин, занимающийся теоретическим материаловедением (компьютерными экспериментами в области нанотехнологий), рассказал о парадоксах наномира. T&P записали основное.

Дмитрий Квашнин

Старший научный сотрудник ИБХФ РАН, кандидат физико-математических наук

Что такое нанотехнологии

С помощью нанотехнологий мы бы хотели создать роботов, которых можно отправить в космос или внедрить в кровеносные сосуды, чтобы они доставляли лекарства к клеткам, помогали эритроцитам двигаться в нужном направлении т. д. Одна шестеренка в таких роботах состоит из десятка деталей. Одна деталь — это один атом. Шестеренка — это десять атомов, 10-9 метров, то есть один нанометр. Целый робот — это несколько нанометров.

Что такое 10-9? Как это представить? Для сравнения: обычный человеческий волос имеет размер примерно 10-5 метра. Эритроциты, клетки крови, снабжающие наш организм кислородом, имеют размер около семи микронов, это тоже приблизительно 10-5 метра. В какой момент заканчивается нано и начинается наш мир? Когда мы можем увидеть объект невооруженным глазом.

Трехмерие, двумерие, одномерие

Что такое трехмерие, двумерие и одномерие и как они влияют на материалы и их свойства в нанотехнологиях? Все мы знаем, что 3D — это трехмерие. Есть обычный фильм, а есть кино в 3D, где на нас с экрана вылетают всякие акулы. В математическом смысле 3D выглядит так: y=f (x, y, z), где y зависит от трех измерений — длины, ширины и высоты. Знакомый всем Марио в трехмерии довольно высокий, широкий и толстенький.

При переходе в двумерие исчезнет одна ось: y=f (x, y). Здесь все намного проще: Марио такой же высокий и широкий, но не толстый, потому что в двумерии никто не может быть полным или худым.

Если мы продолжим уменьшаться, то в одномерии все станет совсем просто, останется всего одна ось: y=f (x). Марио в 1D просто длинный — мы его не узнаем, но это все еще он.

Из трехмерия — в двумерие

Самый распространенный материал в нашем мире — углерод. Он может образовать две абсолютно разные субстанции — алмаз, самый прочный материал на Земле, и графит, причем графит может стать алмазом просто посредством высокого давления. Если даже в нашем мире один элемент может создать кардинально разные материалы с противоположными свойствами, то что же будет в наномире?

Графит известен в первую очередь как карандашный грифель. Размер кончика карандаша — около одного миллиметра, то есть 10-3 метра. Как выглядит грифель в нано? Это просто набор слоев из атомов углерода, образующих слоистую структуру. Похож на стопку бумаги.

Когда мы пишем карандашом, на бумаге остается след. Если проводить аналогию со стопкой бумаги, это как если бы мы вытаскивали из нее по одному листочку. Тонкий слой графита, который остается на бумаге, — это 2D, его толщина составляет всего один атом. Чтобы объект мог считаться двумерным, его толщина должна быть во много (как минимум в десять) раз меньше, чем ширина и длина.

Но есть загвоздка. В 1930-х годах Лев Ландау и Рудольф Пайерлс доказали, что двумерные кристаллы нестабильны и разрушаются из-за термических флуктуаций (случайных отклонений физических величин от их средних значений из-за хаотического теплового движения частиц. — Прим. T&P). Получается, что двумерный плоский материал не может существовать из термодинамических соображений. То есть вроде бы мы не можем создать нано в 2D. Однако нет! Константин Новоселов и Андрей Гейм синтезировали графен. Графен в нано не плоский, а немножко волнистый и поэтому стабильный.

Если в нашем трехмерном мире вытащить из стопки бумаги один лист, то бумага останется бумагой, ее свойства не изменятся. Если же в наномире убрать один слой графита, то получившийся графен будет обладать уникальными свойствами, ничем не похожими на те, что имеет его «прародитель» графит. Графен прозрачный, легкий, в 100 раз прочнее стали, отличный термоэлектрик и электропроводник. Он широко исследуется и уже становится основой для транзисторов.

Сегодня, когда все понимают, что двумерные материалы в принципе могут существовать, появляются теории о том, что новые сущности можно получить из кремния, бора, молибдена, вольфрама и др.

Волокна карбина. Источник: Fujitsu Laboratories

И дальше — в одномерие

У графена в 2D есть ширина и длина. Как же сделать из него 1D и что получится в итоге? Один из методов — порезать его на тонкие ленточки. Если их ширину уменьшать до предельно возможной, то это уже будут не просто ленточки, а еще один уникальный нанообъект — карбин. Его открыли советские ученые (химики Ю.П. Кудрявцев, А.М. Сладков, В.И. Касаточкин и В.В. Коршак. — Прим. T&P) в 1960-е годы.

Второй способ сделать одномерный объект — свернуть графен в трубочку, как ковер. Толщина этой трубочки будет намного меньше, чем ее длина. Если бумагу свернуть в трубочку или нарезать на полосочки, она останется бумагой. Если графен свернуть в трубку, он перейдет в новую форму углерода — нанотрубку, которая обладает рядом уникальных свойств.

Интересные свойства нанообъектов

Электропроводимость — это то, насколько хорошо или плохо материал проводит электрический ток. В нашем мире она описывается одним числом для каждого материала и не зависит от его формы. Неважно, сделаете ли вы серебряный цилиндрик, кубик или шарик — его удельная проводимость всегда будет одинаковой.

В наномире все иначе. Изменения в диаметре нанотрубок повлияют на их проводимость. Если разность n — m (где n и m — некоторые индексы, описывающие диаметр трубки) делится на три, то нанотрубки проводят ток. Если не делится, то не проводят.

Модуль Юнга — еще одно интересное свойство, которое проявляется при сгибании стержня или прутика. Модуль Юнга показывает, насколько сильно материал сопротивляется деформации и напряжению. Например, у алюминия этот показатель в два раза меньше, чем у железа, то есть он сопротивляется в два раза хуже. Опять же, алюминиевый шарик не может быть прочнее алюминиевого кубика. Размер и форма не имеют значения.

В наномире вновь другая картина: чем нанопровод тоньше, тем выше у него модуль Юнга. Если в нашем мире мы захотим что-нибудь достать с антресоли, то выберем стул покрепче, чтобы он нас выдержал. В наномире, хотя это не так очевидно, нам придется предпочесть стул поменьше, потому что он прочнее.

Если в нашем мире наделать в каком-то материале дырок, то он перестанет быть прочным. В наномире все наоборот. Если сделать в графене много дырочек, он станет в два с половиной раза прочнее, чем недефектный графен. Когда мы протыкаем дырки в бумаге, ее сущность не меняется. А когда делаем дырки в графене, убираем один атом, благодаря чему появляется новый локальный эффект. Оставшиеся атомы образуют новую структуру, которая с химической точки зрения прочнее, чем нетронутые области в этом графене.

Практическое применение нанотехнологий

Графен обладает уникальными свойствами, но как их применять в той или иной области, пока еще вопрос. Сейчас он используется в прототипах для одноэлектронных транзисторов (пропускающих сигнал ровно в один электрон). Считается, что в перспективе двухслойный графен с нанопорами (дыры не в один атом, а побольше) сможет стать идеальным материалом для селективной очистки газов или жидкостей. Для применения графена в механике нам нужны большие площади материала без дефектов, но такое производство крайне сложно технологически.

С биологической точки зрения с графеном тоже возникает проблема: попав внутрь организма, он все отравляет. Хотя в медицине графен может использоваться как сенсор «плохих» молекул ДНК (мутирующих, с другим химическим элементом и др.). Для этого к нему прикрепляют два электрода и пропускают через его поры ДНК — на каждую молекулу он реагирует особенным образом.

В Европе уже производят сковородки, велосипеды, шлемы и обувные стельки с добавлением графена. Одна финская фирма изготавливает компоненты для машин, в частности для автомобилей Tesla, в которых кнопки, детали приборной панели и экраны сделаны из довольно толстых нанотрубок. Эти товары прочные и легкие.

Область нанотехнологий сложна для исследования как с точки зрения экспериментов, так и с позиций численного моделирования. Все фундаментальные вопросы, требующие небольших мощностей компьютеров, уже решены. Сегодня основное ограничение для исследований — это недостаточная мощность суперкомпьютеров.

Литература

  • К.С. Новоселов. Графен: материалы Флатландии. Нобелевская лекция, 8 декабря 2010 г.

  • А.К. Гейм. Случайные блуждания: непредсказуемый путь к графену. Нобелевская лекция. Стокгольм, 8 декабря 2010 г.

  • M.S. Dresselhaus, G. Dresselhaus, R. Saito. Physics of carbon nanotubes. Carbon, Vol. 33, No. 7, pp. 883–891, 1995.

  • Carbon Nanotubes Synthesis, Structure, Properties, and Applications. Editors: Dresselhaus, Mildred S., Dresselhaus, Gene, Avouris, Phaedon (Eds.). 2001.

Мы публикуем сокращенные записи лекций, вебинаров, подкастов — то есть устных выступлений.
Мнение спикера может не совпадать с мнением редакции.
Мы запрашиваем ссылки на первоисточники, но их предоставление остается на усмотрение спикера.

theoryandpractice.ru

НАНОТЕХНОЛОГИИ В НАШЕЙ ЖИЗНИ | Наука и жизнь

Наноструктуры заменят традиционные транзисторы.

Компактная учебная нанотехнологическая установка "УМКА" позволяет производить манипуляции с отдельными группами атомов.

При помощи установки "УМКА" удается рассмотреть поверхность DVD.

Для будущих нанотехнологов уже выпущен учебник.

Появившиеся в последней четверти ХХ века нанотехнологии стремительно развиваются. Едва ли не каждый месяц появляются сообщения о новых проектах, казавшихся еще год-другой назад абсолютной фантастикой. По определению, данному пионером этого направления Эриком Дрекслером, нанотехнология - "ожидаемая технология производства, ориентированная на дешевое получение устройств и веществ с заранее заданной атомарной структурой". Это значит, что она оперирует с отдельными атомами для того, чтобы получить структуры с атомарной точностью. В этом коренное отличие нанотехнологий от современных "объемных" bulk-технологий, которые манипулируют макрообъектами.

Напомним читателю, что нано - приставка, обозначающая 10-9. На отрезке длиной в один нанометр можно расположить восемь атомов кислорода.

Нанообъекты (например, наночастицы металлов), как правило, имеют физические и химические свойства, отличные и от свойств более крупных объектов из того же материала и от свойств отдельных атомов. Скажем, температура плавления частиц золота размером 5-10 нм на сотни градусов ниже температуры плавления куска золота объемом 1 см3.

Исследования, проводимые в наноразмерном диапазоне, лежат на стыке наук, часто изыскания в области материаловедения затрагивают области биотехнологий, физики твердого тела, электроники.

Ведущий мировой специалист в области наномедицины Роберт Фрайтас сказал: "Будущие наномашины должны состоять из миллиардов атомов, поэтому их проектирование и построение потребуют усилий команды специалистов. Каждая конструкция наноробота потребует объединения усилий нескольких исследовательских коллективов. В проектировании и построении самолета "Боинг-777" участвовало множество коллективов во всем мире. Наномедицинский робот будущего, состоящий из миллиона (или даже больше) рабочих частей, по сложности конструкции будет не проще самолета".

НАНОПРОДУКТЫ ВОКРУГ НАС

Наномир сложен и пока еще сравнительно мало изучен, и все же не столь далек от нас, как это казалось несколько лет назад. Большинство из нас регулярно пользуются теми или иными достижениями нанотехнологий, даже не подозревая об этом. Например, современная микроэлектроника уже не микро-, а нано: производимые сегодня транзисторы - основа всех чипов - лежат в диапазоне до 90 нм. И уже запланирована дальнейшая миниатюризация электронных компонентов до 60, 45 и 30 нм.

Более того, как недавно заявили представители компании "Хьюлетт-Паккард", транзисторы, изготавливаемые по традиционной технологии, будут заменены наноструктурами. Один такой элемент - это три проводника шириной в несколько нанометров: два из них параллельны, а третий расположен под прямым углом к ним. Проводники не соприкасаются, а проходят, как мосты, один над другим. При этом с верхних проводников на нижние спускаются молекулярные цепочки, сформированные из материала нанопроводников под воздействием приложенного к ним напряжения. Построенные по этой технологии схемы уже продемонстрировали способность хранить данные и выполнять логические операции, то есть - заменять транзисторы.

С новой технологией размеры деталей микросхем опустятся существенно ниже планки в 10-15 нанометров, в масштабы, где традиционные полупроводниковые транзисторы просто физически не могут работать. Вероятно, уже в первой половине следующего десятилетия появятся серийные микросхемы (пока еще традиционные, кремниевые), в которые будет встроено некоторое количество наноэлементов, созданных по новой технологии.

Компания "Кодак" в 2004 году выпустила бумагу для струйных принтеров Ultima. Она имеет девять слоев. Верхний слой состоит из керамических наночастиц, которые делают бумагу более плотной и блестящей. Во внутренних слоях расположены пигментные наночастицы размерами 10 нм, улучшающие качество печати. А быстрой фиксации краски способствуют включенные в состав покрытия полимерные наночастицы.

Директор Института нанотехнологий США Чэд Миркин считает, что "нанотехнологии перестроят все материалы заново. Все материалы, полученные с помощью молекулярного производства, будут новыми, так как до сих пор у человечества не было возможности разрабатывать и производить наноструктуры. Сейчас мы используем в промышленности только то, что нам дает природа. Из деревьев мы делаем доски, из проводящего металла - проволоку. Нанотехнологический подход состоит в том, что мы будем перерабатывать практически любые природные ресурсы в так называемые "строительные блоки", которые составят основу будущей промышленности".

Сейчас мы уже видим наступление нанореволюции: это и новые компьютерные чипы, и новые ткани, на которых не остается пятен, и использование наночастиц в медицинской диагностике (см. также "Наука и жизнь" №№ 2, 4, 2005 г.). Даже косметическая индустрия заинтересована в наноматериалах. Они могут создать в косметике много новых нестандартных направлений, которых не было раньше.

В наноразмерном диапазоне практически любой материал проявляет уникальные свойства. Например, известно, что ионы серебра обладают антисептической активностью. Значительно более высокой активностью обладает раствор наночастиц серебра. Если обработать этим раствором бинт и приложить его к гнойной ране, воспаление пройдет и рана заживет быстрее, чем с использованием обычных антисептиков.

Отечественный концерн "Наноиндустрия" разработал технологию производства наночастиц серебра, стабильных в растворах и в адсорбированном состоянии. Получаемые препараты обладают широким спектром противомикробного действия. Таким образом, появилась возможность создания целой гаммы продуктов с антимикробными свойствами при незначительном изменении технологического процесса производителями существующей продукции.

Наночастицы серебра могут быть использованы для модификации традиционных и создания новых материалов, покрытий, дезинфицирующих и моющих средств (в том числе зубных и чистящих паст, стиральных порошков, мыла), косметики. Покрытия и материалы (композитные, текстильные, лакокрасочные, углеродные и другие), модифицированные наночастицами серебра, могут быть использованы в качестве профилактических антимикробных средств защиты в местах, где возрастает опасность распространения инфекций: на транспорте, на предприятиях общественного питания, в сельскохозяйственных и животноводческих помещениях, в детских, спортивных, медицинских учреждениях. Наночастицы серебра можно использовать для очистки воды и уничтожения болезнетворных микроорганизмов в фильтрах систем кондиционирования воздуха, в бассейнах, душах и других подобных местах массового посещения.

Выпускается аналогичная продукция и за рубежом. Одна из фирм производит покрытия с серебряными наночастицами для лечения хронических воспалений и открытых ран.

Еще один вид наноматериалов - обладающие колоссальной прочностью углеродные нанотрубки (см. "Наука и жизнь" № 5, 2002 г.; № 6, 2003 г.). Это своеобразные цилиндрические полимерные молекулы диаметром примерно от половины нанометра и длиной до нескольких микрометров. Впервые их обнаружили менее 10 лет назад как побочные продукты синтеза фуллерена С60. Тем не менее уже сейчас на основе углеродных нанотрубок создаются электронные устройства нанометровых размеров. Ожидается, что в обозримом будущем они заменят многие элементы в электронных схемах различных приборов, в том числе современных компьютеров.

Впрочем, используют нанотрубки не только в электронике. В продаже уже есть ракетки для тенниса, армированные углеродными нанотрубками для ограничения скручивания и обеспечения большей мощности удара. Применяют их и в некоторых деталях спортивных велосипедов.

РОССИЯ НА РЫНКЕ НАНОТЕХНОЛОГИЙ

Отечественная компания "Nanotechnology News Network" недавно представила в России другую новинку - самоочищающиеся нанопокрытия. Достаточно опрыскать стекло автомобиля специальным раствором с наночастицами диоксида кремния, и на протяжении 50 000 км к нему не будет приставать грязь и вода. На стекле остается прозрачный сверхтонкий слой, на котором воде просто не за что зацепиться, и она скатывается вместе с грязью. В первую очередь новинкой заинтересовались владельцы небоскребов - на мытье фасадов этих зданий уходят огромные деньги. Существуют такие составы для покрытия керамики, камня, дерева и даже одежды.

Необходимо сказать, что некоторые российские организации уже успешно выступают на международном нанотехнологическом рынке.

Концерн "Наноиндустрия", например, имеет в своем багаже ряд нанотехнологических продуктов, применимых в различных областях промышленности. Это восстановительный состав "РВС" и наночастицы серебра для биотехнологий и медицины, промышленная нанотехнологическая установка "ЛУЧ-1,2" и учебная нанотехнологическая установка "УМКА".

Состав "РВС", который может уберечь от износа и восстановить практически любые трущиеся металлические поверхности, готовят на основе адаптивных наночастиц. Это средство позволяет создавать модифицированный высокоуглеродистый железосиликатный защитный слой толщиной 0,1-1,5 мм в областях интенсивного трения металлических поверхностей (например, в парах трения в двигателях внутреннего сгорания). Залив такой состав в картер для масла, можно надолго забыть о проблеме износа мотора. При работе механические части нагреваются от трения, этот нагрев вызывает прилипание металлических наночастиц к поврежденным областям. Избыточное же наращивание вызывает более сильный нагрев, и наночастицы утрачивают свою способность к присоединению. Таким образом в трущемся узле постоянно поддерживается равновесие, и детали практически не изнашиваются.

Особый интерес представляет комплекс нанотехнологического оборудования "УМКА", который предназначен для проведения демонстрационных, исследовательских и лабораторных работ на атомно-молекулярном уровне в области физики, химии, биологии, медицины, генетики и других фундаменталь ных и прикладных наук. Например, недавно на нем было получено изображение поверхности DVD с разрешением 0,3 мкм, и это еще не предел. Уникальная технология работы на пикоамперных токах позволяет сканировать даже слабопроводящие биологические образцы без предварительного напыления металла (обычно необходимо, чтобы верхний слой образца был проводящим). "УМКА" обладает высокой температурной стабильностью, позволяющей проводить длительные манипуляции с отдельными группами атомов, и высокой скоростью сканирования, позволяющей наблюдать быстропротекающие процессы.

Основная сфера применения комплекса "УМКА" - обучение современным практическим методам работы с наноразмерными структурами. Комплекс "УМКА" включает: туннельный микроскоп, систему виброзащиты, набор тестовых образцов, наборы расходных материалов и инструментов. Умещаются приборы в небольшом кейсе, работают в комнатных условиях и стоят менее 8 тысяч долларов. Управлять экспериментами можно с обычного персонального компьютера.

В январе 2005 года открылся первый российский интернет-магазин, продающий нанотехнологичес кие продукты. Постоянный адрес магазина в Интернете - www.nanobot.ru

ПРОБЛЕМЫ БЕЗОПАСНОСТИ

Недавно было установлено, что шарообразные молекулы С60, называемые фуллеренами, могут вызывать серьезные заболевания и вредить окружающей среде. Токсичность водорастворимых фуллеренов при их воздействии на человеческие клетки двух различных типов была установлена исследователями из университетов Райса и Джорджии (США).

Профессор химии Вики Колвин из университета Райса и его коллеги установили, что при растворении фуллеренов в воде формируются коллоиды C60, которые при воздействии на клетки кожи человека и клетки карциномы печени вызывают их гибель. При этом концентрация фуллеренов в воде была весьма низкой: ~ 20 молекул C60 на 1 миллиард молекул воды. Одновременно исследователи показали, что токсичность молекул зависит от модификации их поверхности.

Как предполагают исследователи, токсичность простых фуллеренов C60 связана с тем, что их поверхность способна производить супероксидные анионы. Эти радикалы повреждают клеточные мембраны и приводят к гибели клеток.

Колвин и его коллеги заявили, что такое негативное свойство фуллеренов можно использовать во благо - для лечения раковых опухолей. Необходимо лишь детально выяснить механизм образования кислородных радикалов. Очевидно, на основе фуллеренов можно будет создать и сверхэффективные антибактериальные препараты.

Вместе с тем опасность применения фуллеренов в продуктах массового потребления представляется ученым вполне реальной.

Видимо, поэтому недавно американская Комиссия по безопасности пищевых продуктов и лекарств (FDA) заявила о необходимости лицензирования и регулирования широкого спектра товаров (пищевые продукты, косметика, лекарства, аппаратура и ветеринария), изготовленных с помощью нанотехнологий и использующих наноматериалы и наноструктуры.

НАНОТЕХНОЛОГИЯМ НУЖНА ПОДДЕРЖКА ГОСУДАРСТВА

К сожалению, в России государственной программы по развитию нанотехнологий до сих пор нет. (В 2005 году нанотехнологической программе США, между прочим, исполнилось пять лет.) Без сомнения, существование централизованной государственной программы по развитию нанотехнологий значительно помогло бы в практической реализации результатов исследований. То, что успешные разработки в области нанотехнологий в стране есть, мы, к сожалению, узнаем из зарубежных источников. Например, летом Институт стандартов США объявил о создании наименьших в мире атомных часов. Как оказалось, над их созданием работал и российский коллектив.

Государственной программы в России нет, а исследователи и энтузиасты есть: за прошлый год Молодежное научное общество (МНО) объединило более 500 молодых ученых, аспирантов и студентов, думающих о будущем своей страны. Для детального изучения проблематики нанотехнологий в феврале 2004 года на базе МНО создана аналитическая компания "Nanotechnology News Network (NNN)", отслеживающая сотни открытых мировых источников в этой области и на сегодня обработавшая свыше 4500 информационных сообщений зарубежных и российских СМИ, статей, пресс-релизов и экспертных комментариев. Созданы сайты www.mno.ru и www.nanonewsnet.ru, с которыми ознакомились более 170 000 граждан России и СНГ.

КОНКУРС МОЛОДЕЖНЫХ ПРОЕКТОВ

В апреле 2004 года совместно с концерном "Наноиндустрия" при поддержке "Юниаструм Банка" был успешно проведен первый Всероссийский конкурс молодежных проектов по созданию отечественной молекулярной нанотехнологии, вызвавший живой интерес российских ученых.

Победители конкурса представили выдающиеся разработки: первое место было присуждено коллективу молодых ученых из РХТУ им. Д. И. Менделеева под руководством кандидата химических наук Галины Поповой, создавшему биомиметические (биомиметика - подражание структурам, существующим в природе) материалы для оптических наносенсоров, молекулярной электроники и биомедицины. Второе место заняла аспирантка Ташкентского государственного педагогического университета им. Низами Марина Фомина, разработавшая систему направленной доставки лекарств к больным тканям, а третье - школьник из Томска Алексей Хасанов, автор технологии создания нанокерамических материалов с уникальными свойствами. Победители получили ценные призы.

При поддержке банка разработан и готовится к изданию научно-популярный учебник "Нанотехнологии для всех", заслуживший высокую оценку ведущих ученых.

Компания NNN, за год ставшая ведущим аналитическим агентством в области нанотехнологии, в декабре 2004 года объявила начало Второго Всероссийского конкурса молодежных проектов, генеральным спонсором которого вновь выступил довольный результатами первого конкурса "Юниаструм Банк". Кроме того, на сей раз спонсором стала и компания "Powercom" - международный производитель источников бесперебойного питания. Активное участие в подготовке и освещении конкурса принимает журнал "Наука и жизнь".

Цель конкурса - привлечь талантливую молодежь к развитию нанотехнологий в своей стране, а не за рубежом.

Победитель конкурса получит нанотехнологическую лабораторию "УМКА". Занявшие второе и третье места будут награждены современными ноутбуками; лучшие участники получат бесплатную подписку на журнал "Наука и жизнь". В качестве призов предусмотрены ремонтно-восстановительные комплекты для автотранспорта на основе наночастиц, подписка на журнал "Универсум" и ежемесячные CD "Мир нанотехнологий".

Направленность проектов чрезвычайно разнообразна: от перспективных наноматериалов для автомобилестроения и авиации до имплантатов и нейротехнологических интерфейсов. Подробные материалы конкурса находятся на сайте www.nanonewsnet.ru.

В декабре 2004 года в городе Фрязино (Московская обл.) прошла первая конференция, посвященная промышленному использованию нанотехнологий, где ученые представили десятки разработок, готовых к внедрению на производстве. Среди них - новые материалы на основе нанотрубок, сверхпрочные покрытия, антифрикционные составы, проводящие полимеры для гибкой электроники, сверхъемкие конденсаторы и т.д.

Нанотехнологии в России набирают ход. Однако, если исследования не будут координироваться государством или комплексной федеральной программой, в лучшую сторону, скорее всего, ничего так и не изменится. Для будущих нанотехнологов уже выпущен учебник.

www.nkj.ru

НАНОТЕХНОЛОГИИ В СОВРЕМЕННОМ МИРЕ

НАНОТЕХНОЛОГИИ В СОВРЕМЕННОМ МИРЕ

Рахмангулов Р.И. 1

1МОБУ СОШ с.Анясево

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Содержание:

Введение…………………………………………………………………..

3

1. Что такое нанотехнологии………….………………………………...

5

2. Нанотехнологии в быту……………………………………………….

6

3. Неньютоновская жидкость…………………………………………

8

Заключение………………………………………………………………..

12

Список литературы…………………………….........................................

13

   

Введение

В последнее время можно часто слышать слово «нанотехнологии». Если спросить любого учёного, что это такое, и для чего нужны нанотехнологии, ответ будет краток: «Нанотехнологии изменяют привычные свойства вещества. Они преображают мир и делают его лучше».

Учёные утверждают, что нанотехнологии найдут применение в очень многих областях деятельности: в промышленности, в энергетике, в исследованиях космоса, в медицине и во многом другом. Например, крохотные нанороботы, способные проникнуть в любую клетку человеческого организма, смогут быстро лечить те или иные болезни и производить такие операции, которые не под силу даже самому опытному хирургу.

Благодаря нанотехнологиям появятся «умные дома». В них человеку практически не надо будет заниматься скучными бытовыми хлопотами. На себя эти обязанности возьмут «умные вещи» и «умная пыль». Люда станут носить одежду, которая не пачкается, более того, сообщает хозяину, что, например, пора обедать или принять душ.

Нанотехнологии позволят изобрести компьютерную технику и мобильные телефоны, которые можно будет складывать, как носовой платок, и носить в кармане.

Словом, учёные-нанотехнологи действительно намерены существенно преобразить жизнь человека.

Таким образом я сформулировал исследовательскую тему

« Нанотехнологии в современном мире». Меня заинтересовала эта тема, потому что в будущем нам жить и работать с нанотехнологиями, а на сегодняшний день нам очень мало, что известно об этом. Я считаю, что сегодня – это самая актуальная проблема, потому что она направлена на наше с вами будущее. И я решил начать изучать и исследовать технологии будущего уже сегодня.

Актуальность работы: изучение физики начинается с 7 класса и если я, изучив свойства неньютоновской жидкости, смогу рассказать о них своим одноклассникам, то это не только повысит интерес к новому предмету, но и возможно, приведёт к желанию самостоятельно изучать другие темы, а так же проводить посильные эксперименты.

Цель: 1. Разобраться в сущности понятия «нанотехнология», раскрыть суть нанонауки.

2. Понять, как человек реализует огромный потенциал нанонауки в повседневной жизни, её перспективы и будущее.

3.Изучить, что представляет неньютоновская жидкость и какими необычными свойствами обладает.

Задачи исследования:

  • Выяснить значение термина «нанотехнология».
  • Найти примеры применения нанотехнологий в быту.
  • Узнать о необычных свойствах жидкостей.
  • Доказать, что в домашних условиях можно сделать неньютоновскую жидкость.
  • Провести эксперименты, демонстрирующие необычные свойства неньютоновской жидкости.
  • Предположить, где можно использовать свойства таких жидкостей.
  • Рассказать сверстникам о неньютоновской жидкости и её свойствах.
Гипотеза: Изучая нанотехнологии, мы все больше расширяем область их применений – от медицины до космических исследований.

Объект исследования: неньютоновская жидкость

Предмет исследования: свойства неньютоновской жидкости.

Методы исследования: сбор материала по теме, его анализ и обработка, оформление работы, создание презентации.

Выход проектного продукта: презентация

Что такое нанотехнологии

Что же такое нанотехнологии? И как именно они позволяют менять свойства вещей?

Слово «нанотехнологии» состоит из двух слов — «нано» и «технологии».

«Нано» — греческое слово, означающее одну миллиардную часть чего-нибудь, например, метра. Размер одного атома немного меньше нанометра. А нанометр настолько меньше метра, насколько обыкновенная горошина меньше земного шара. Если бы рост человека был один нанометр, то толщина листа бумаги показалась бы человеку равной расстоянию от Москвы до города Тулы, а это целых 170 километров!

Слово «технологии» означает создание из доступных материалов того, что необходимо человеку.

А нанотехнологии — это создание того, что нужно человеку, из атомов и групп атомов (они называются наночастицами) при помощи специальных приборов.

Учёные договорились считать наночастицами все, что имеет размер от одного до ста нанометров.

Существует два способа получения наночастиц.

Первый, более простой, метод — «сверху вниз». Исходный материал измельчают разнообразными способами до тех пор, пока частица не станет наноразмерной.

Второй — получение наночастиц путём объединения отдельных атомов, «снизу вверх». Это более сложный способ, но именно за ним учёные видят будущее нанотехнодогий. Получение наночастиц этим способом напоминает работу с конструктором. Только в качестве деталей используются атомы и молекулы, из которых учёные создают новые наноматериалы и наноустройства.

Отцом нанотехнологии можно считать греческого философа Демокрита. Примерно в 400 г. до н.э. он впервые использовал слово «атом», что в переводе с греческого означает «нераскалываемый», для описания самой малой частицы вещества.

Примером первого использования нанотехнологий можно назвать – изобретение в 1883 году фотопленки Джорджем Истмэном, который впоследствии основал известную компанию Kodak.

В настоящее время нанотехнология является одним из приоритетных направлений развития Российской науки.

Нанотехнологии в быту

В настоящее время нанотехнологии находят применение в разных сферах жизнедеятельности человека. Перечислить все области, в которых эта глобальная технология применяется, практически невозможно. Можно назвать только некоторые из них.

Как оказалось, нанотехнологии часто встречаются в быту, они повсюду, просто мы об этом не знаем.

Все мы используем мыло, без которого уже не представляем личную гигиену. Никто даже не догадывается, что мыло – продукт нанотехнологии, но один из самых простых. Мыло содержит мицеллы, небольшие наночастицы, которые используются и для производства других популярных косметологических средств. Любителям солнца и шоколадного загара также помогают нанотехнологии. Солнцезащитные крема и лосьоны создаются с добавлением частиц, которые насыщают кожу витаминами и защищают ее от вредного воздействия.

Нанотехнологии немаловажную роль сыграли и в развитии моды. С применением новейших технологий производятся лыжные куртки. Они очень хорошо сохраняют тепло, не пропускают ветра и не мокнут. Также наночастицы используют при создании иной спортивной одежды, которая не мнется, устойчива к загрязнениям и ненастьям.

В теннисе нанотехнологии сыграли важную и одну из главных ролей. Наночастицы содержаться в теннисных ракетках и мячиках. Благодаря им, они стали гораздо легче, мячи более прыгучими и быстрыми. Нанотехнологии стали популярными при разработке и выпуске сантехники. Наночастицы позволяют создавать особое покрытие, которое долго сохраняет свой товарный блестящий вид и очень легко чистится.

Мы даже не подозреваем, что нанотехнологии помогают нам в повседневной жизни при работе с компьютерами и интернетом. Наночастицы используются для увеличения параметров памяти жестких дисков. Благодаря разработкам, появились ноутбуки, нетбуки, айфоны, смартфоны и многие другие современные гаджеты. Нашим автомобилям также значительно помогло развитие наночастиц. Ими производители покрывают поверхности детали и они служат гораздо дольше. Также в некоторых автомобилях устанавливаются

Кусочек лейкопластыря, которым мы заклеиваем порез на ручке , имеет нанослой серебра, помогающий быстрее залечивать рану. Это потому, что серебро имеет антибактериальные свойства, которые действуют лучше с повышением площади поверхности, что обеспечивается наночастицами.

Значение нанотехнологий в жизни каждого человека огромно. Чем комфортнее становится жизнь, тем больше ученые смогли узнать об этих очень малых частицах.

Неньютоновская жидкость

Ньютоновская жидкость – это вода, масло и большая часть привычных нам в ежедневном использовании текучих веществ, то есть таких, которые сохраняют свое агрегатное состояние, что бы вы с ними не делали.

Неньютоновскими называют жидкости, течение которых не подчиняется закону Ньютона.

Еще в конце XVII века великий физик Ньютон обратил внимание, что грести веслами быстро гораздо тяжелее нежели, если делать это медленно. И тогда он сформулировал закон, согласно которому вязкость жидкости увеличивается пропорционально силе воздействия на нее.

Простейшим наглядным бытовым примером может являться смесь крахмала с небольшим количеством воды. Чем быстрее происходит внешнее воздействие на взвешенные в жидкости макромолекулы связующего вещества, тем выше её вязкость.

Таких, аномальных с точки зрения гидравлики, жидкостей немало. Они широко распространены в нефтяной, химической, перерабатывающей, военной и других отраслях промышленности. К неньютоновским жидкостям можно отнести буровые растворы, сточные грязи, масляные краски, зубную пасту, кровь, жидкое мыло и др.

Свойства неньютоновской жидкости широко применяются в военной промышленности при изготовлении молекулярных бронежилетов, умного пластилина «хандгам», а также снаряжение для зимних видов спорта, чехлы для iPhone.

Приготовление раствора.

Для приготовления нам нужны крахмал (картофельный, кукурузный — любой) и вода. Пропорция зависит от качества крахмала и обычно составляет от 1:1 до 1:3 в пользу воды. В результате смешивания мы получаем нечто типа киселя, обладающего интересными свойствами . ( Приложение 1)

Исследование неньютоновской жидкости.

Опыт №1. Так, если в ёмкость со смесью медленно ввести руку, то результат точно такой же, как если бы мы ввели руку в воду. Но если размахнуться как следует и стукнуть по этой смеси, то рука отскочит, как если бы это было твёрдое вещество.

Опыт №2. Если лить такую смесь с достаточной высоты, то в верхней части струи она будет течь, как жидкость. А в нижней — скапливаться комками, как твёрдое вещество.

Опыт №3. Кроме того, можно засунуть руку в жидкость и резко сжать пальцы. Можно почувствовать, как между пальцами образовалась твёрдая прослойка.

Опыт №4. Или ещё один эксперимент — сунуть руку в этот "кисель" и резко попытаться её вытянуть. Большая вероятность, что ёмкость поднимется вслед за рукой.

Опыт №5. Когда быстро воздействовать на жидкость, катать как бы шарик из воды, то он получится на самом деле, благодаря неньютоновской жидкости. (см. приложение 1)

По результатам этих опытов можно сделать следующий вывод, если на них воздействовать резко, сильно, быстро - они проявляют свойства, близкие к свойствам твердых тел, а при медленном воздействии становится жидкостью.

Основываясь на свойствах неньютоновской жидкости, я хочу предложить несколько способов ее использования.

1. Изготовление контейнеров для транспортировки и хранения легко бьющихся стеклянных предметов (стекло, посуда, елочные игрушки и др.)

2. Использование неньютоновской жидкости при изготовлении защитных средств (наколенники, налокотники, шлемы и др.) для спортсменов, а так же их применении при обучении маленьких детей ходьбе.

У неньютоновской жидкости есть существенный недостаток: жидкость утрачивает свои свойства, когда из нее испаряется вода. Мною было проведено исследование, в результате которого я выяснил, что свойства сохраняются 2-5 дней в зависимости от температуры окружающей среды.

Температура окружающей среды

Количество дней, в течение которых свойства сохраняются

20°С

5 дней

22°С

4 дня

25°С

2 дня

Вывод: чем ниже температура окружающей среды, тем медленнее испаряется вода и тем дольше сохраняются свойства неньютоновской жидкости.

Заключение 1. Нанотехнологии - символ будущего, важнейшая отрасль, без которой немыслимо дальнейшее развитие цивилизации . 2. Использование продуктов нанотехнологии в быту, улучшает качество жизни человека. 3. В нанотехнологиях наше будущее. Всем странам следует развивать эту отрасль науки. 4. Изучение нанотехнологии принесет нам еще много научных побед в будущем.

5. По результатам экспериментов можно сделать следующие выводы:

- если мешаем быстро неньютоновскую жидкость, чувствуется сопротивление, а если медленнее то нет. При быстром движении такая жидкость ведёт себя как твердое тело;

- чем ниже температура окружающей среды, тем медленнее испаряется вода и тем дольше сохраняются свойства неньютоновской жидкости.

Список использованной литературы

  1. http://popular.rusnano.com

  2. http://www.rusnano.com

  3. http://www.en.wikipedia.org

  4. http://nanoru.ru

  5. http://www.nanometer.ru

  6. http://www.nanotech.ru

  7. http://www.rusnanonet.ru/nns/67171/info/

  8. http://izvmor.ru/

  9. http://cnnrm.ru/

Приложение 1

Приготовление раствора.

Приложение 2

Опыт №5

0

Просмотров работы: 3785

school-science.ru

Что такое нанотехнологии? | Нанотехнологии Nanonewsnet

Как ни странно звучит этот вопрос в наше время, но отвечать придётся. Хотя бы для себя самого. Общаясь с учёными и специалистами, занятыми в этой отрасли, я пришёл к выводу, что вопрос до сих пор остаётся открытым.

В Википедии кто-то дал такое определение:

Нанотехнология — междисциплинарная область фундаментальной и прикладной науки и техники, имеющая дело с совокупностью теоретического обоснования, практических методов исследования, анализа и синтеза, а также методов производства и применения продуктов с заданной атомарной структурой путём контролируемого манипулирования отдельными атомами и молекулами.

А такое определение было там же года 2 тому назад:

Нанотехнология — область прикладной науки и техники, занимающаяся изучением свойств объектов и разработкой устройств размеров порядка нанометра (по системе единиц СИ, 10-9 метра).

В популярной печати используется ещё более простое и доходчивое для обывателя определение:

Нанотехнологии – это технологии манипулирования веществом на атомном и молекулярном уровне.

(Люблю краткие определения :) )

Или вот определение профессора Г. Г. Еленина (МГУ, Институт прикладной математики им. М.В. Келдыша РАН):

Нанотехнологией называется междисциплинарная область науки, в которой изучаются закономерности физико-химических процессов в пространственных областях нанометровых размеров с целью управления отдельными атомами, молекулами, молекулярными системами при создании новых молекул, наноструктур, наноустройств и материалов со специальными физическими, химическими и биологическими свойствами.

Да, в общем, всё довольно понятно.. Но вот наш (специально отмечу, отечественный) дотошный скептик скажет: «А что, всякий раз, когда мы растворяем кусочек сахара в стакане чая, мы разве не манипулируем веществом на молекулярном уровне?»

И будет прав. Необходимо добавить к опередению понятия, связанные с «контролем и точностью манипулирования».

Федеральное Агентство по науке и инновациям в «Концепции развития в РФ работ в области нанотехнологий до 2010 года», дает такое определение:

«Нанотехнология – совокупность методов и приёмов, обеспечивающих возможность контролируемым образом создавать и модифицировать объекты, включающие компоненты с размерами менее 100нм, хотя бы в одном измерении, и в результате этого получившие принципиально новые качества, позволяющие осуществить их интеграцию в полноценно функционирующие системы большого масштаба; в более широком смысле этот термин охватывает также методы диагностики, характерологии и исследований таких объектов».

Ого! Мощно сказано!

Или вот Статс-секретарь Минобрнауки РФ Дмитрий Ливанов определяет нанотехнологии как:

«набор научных, технологических и производственных направлений, которые объединены в единую культуру, основанную на проведении операций с материей на уровне отдельных молекул и атомов».

Простой скептик удовлетворён, но вот скептик-специалист скажет: «А не этими ли самыми нанотехнологиями всё время занимается традиционная химия или молекулярная биология и многие другие направления науки, создавая новые вещества, в которых их свойства и структура определяются определенным образом связанными наноразмерными объектами?»

Что же делать? Мы же понимаем, что такое «нанотехнологии».. чувствуем, можно сказать.. Попробуем добавить к определению ещё пару терминов.

Бритва Оккама

Нанотехнологии: любые технологии создания продуктов, потребительские свойства которых определяются необходимостью контроля и манипулирования отдельными наноразмерными объектами.

Кратко и скупо? Дадим пояснения использованным в определении терминам:

«Любые»: данный термин призван примирить специалистов разных научно-технологических направлений. С другой стороны, этот термин обязывает контролирующие бюджет развития нанотехнологий организации заботиться о финансировании широкого круга направлений. Включая, конечно и молекулярные биотехнологии. (Без необходимости искусственно притягивать к названию этих направлений приставку «нано-»). Считаю довольно важным термином для ситуации с нанотехнологиями в нашей стране на текущем этапе :).

«Потребительские свойства» (можно, конечно, использовать традиционный термин «Потребительская стоимость» – кому как нравится): создание продуктов с использованием таких передовых методов, как контроль и манипулирование веществом на наноуровне, должно придавать какие-либо новые потребительские свойства, либо влиять на цену продуктов, в противном случае оно становится бессмысленным.

Понятно также, что, например, нанотрубки, у которых один из линейных размеров лежит в области традиционной размерности, также попадают под это определение. При этом, сами создаваемые продукты могут иметь любые размеры – от «нано» до традиционных.

«Отдельные»: наличие этого термина уводит определение от традиционной химии и однозначно требует наличия самого передового научного, метрологического и технологического инструментария, способного обеспечить контроль за отдельными, а при необходимости даже за конкретными нанообъектами. Именно при индивидуальном контроле мы получаем объекты, обладающие потребительской новизной. Можно возразить, что, например, многие из существующих технологий промышленного производства ультрадисперстных материалов не требуют наличия такого контроля, но это только с первого взгляда; на самом же деле сертифицированное производство ультрадисперстных материалов в обязательном порядке требует наличия контроля за размерностью отдельных частиц.

«Контроль», без «Манипулирования» распостраняет определение на так наз. нанотехнологии «предыдущего поколения».
«Контроль» совместно с «Манипулированием» распространяет определение на перспективные нанотехнологии.

Таким образом, если мы способны найти конкретный наноразмерный объект, проконтролировать и при необходимости изменить его структуру и связи, то это – «нанотехнологии». Если же мы получаем наноразмерные объекты без возможности такого контроля (за конкретными нанообъектами), то это не нанотехнологии или, в лучшем случае, нанотехнологии «предыдущего поколения».

«Наноразмерный объект»: атом, молекула, надмолекулярное образование.

В целом, определение пытается связать науку и технологии с экономикой. Т.е. отвечает достижению главных целей программы развития наноиндустрии: созданию технологий, опирающихся на передовые методы исследования и производства, а также коммерциализации полученных достижений.

В общем, пока сам бы я на этом остановился. А вы?


Сегодня (16.08.07) пришло на ум такое определение:

Нанотехнологии: Любые технологии прецизионного манипулирования наноразмерными объектами

А вот определение академика Ю.Д.Третьякова:

Нанотехнологии: «это область знания, ориентированная на изучение и применение материалов, которые наноструктурированы и имеют размер частиц от 1 до 100 нанометров (нано – 10–9)»
(Источник)

Определение из презентации группы Онексим (М.Прохоров):

Нанотехнология – совокупность методов и приемов, обеспечивающих возможность контролируемым образом создавать объекты и материалы из отдельных атомов, молекул и компонентов с размерами от 1 до 100 нм, хотя бы в одном измерении.

Определение LUX Research

Нанотехнологии — это не новая отрасль мировой экономики, а средство для модернизации множества других ее отраслей.

Хорошая статья, в которой даётся определение нанотехнологий, М.Н. Ваучского "«Понятийный аппарат наномира»"":http://www.ntsr.info/…ary/3199.htm
Военный инженерно-технический университет (ВИТУ), Санкт-Петербург, Россия

www.nanonewsnet.ru


Смотрите также