Щелочь что это такое


Щёлочи — Википедия

Щёлочи (в русском языке происходит от слова «щёлок», возможно, производное от того же корня, что и др.-исл. «skola» — «стирать»[1]) — гидроксиды щелочных, щёлочноземельных металлов и некоторых других элементов, например, таллия. К щелочам относятся хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH и катион металла.

К щелочам относятся гидроксиды металлов подгрупп Iа и IIа (начиная с кальция) периодической системы, например NaOH (едкий натр), KOH (едкое кали), Ba(OH)2 (едкий барий). В качестве исключения можно отнести к щелочам гидроксид одновалентного таллия TlOH, который хорошо растворим в воде и является сильным основанием. Едкие щёлочи — тривиальное название гидроксидов лития LiOH, натрия NaOH, калия КОН, рубидия RbOH и цезия CsOH. Название «едкая щёлочь» обусловлено свойством разъедать кожу и слизистые оболочки, (вызывая сильные ожоги), бумагу и другие органические вещества.

Из-за очень большой химической активности щелочных металлов едкие щёлочи долгое время не удавалось разложить и они потому считались простыми веществами. Одним из первых предположение о сложном составе едких щелочей высказал Лавуазье. Основываясь на своей теории о том, что все простые вещества могут окисляться, Лавуазье решил, что едкие щёлочи — это уже окисленные сложные вещества. Однако подтвердить это удалось лишь Дэви в начале XIX века после применения им электрохимии[2].

Гидроксиды щелочных металлов (едкие щёлочи) представляют собой твёрдые, белые, очень гигроскопичные вещества. Щёлочи — сильные основания, очень хорошо растворимые в воде, причём реакция сопровождается значительным тепловыделением. Сила основания и растворимость в воде возрастает с увеличением радиуса катиона в каждой группе периодической системы. Самые сильные щёлочи — гидроксид цезия (поскольку из-за очень малого периода полураспада гидроксид франция не получен в макроскопических количествах) в группе Ia и гидроксид радия в группе IIa. Кроме того, едкие щёлочи растворимы в этаноле и метаноле.

Щёлочи проявляют основные свойства. В твёрдом состоянии все щёлочи поглощают H2O из воздуха, а также CO2 (также и в состоянии раствора) из воздуха, постепенно превращаясь в карбонаты. Щёлочи широко применяются в промышленности.

Качественные реакции на щёлочи[править | править код]

Водные растворы щелочей изменяют окраску индикаторов.

Индикатор
и номер перехода
х[3] Интервал pH
и номер перехода
Цвет
щёлочной формы
Метиловый фиолетовый 0,13-0,5 [I] зелёный
Крезоловый красный [I] 0,2-1,8 [I] жёлтый
Метиловый фиолетовый [II] 1,0-1,5 [II] синий
Тимоловый синий [I] к 1,2-2,8 [I] жёлтый
Тропеолин 00 o 1,3-3,2 жёлтый
Метиловый фиолетовый [III] 2,0-3,0 [III] фиолетовый
(Ди)метиловый жёлтый o 3,0-4,0 жёлтый
Бромфеноловый синий к 3,0-4,6 сине-фиолетовый
Конго красный 3,0-5,2 синий
Метиловый оранжевый o 3,1-(4,0)4,4 (оранжево-)жёлтый
Бромкрезоловый зелёный к 3,8-5,4 синий
Бромкрезоловый синий 3,8-5,4 синий
Лакмоид к 4,0-6,4 синий
Метиловый красный o 4,2(4,4)-6,2(6,3) жёлтый
Хлорфеноловый красный к 5,0-6,6 красный
Лакмус (азолитмин) 5,0-8,0 (4,5-8,3) синий
Бромкрезоловый пурпурный к 5,2-6,8(6,7) ярко-красный
Бромтимоловый синий к 6,0-7,6 синий
Нейтральный красный o 6,8-8,0 янтарно-жёлтый
Феноловый красный о 6,8-(8,0)8,4 ярко-красный
Крезоловый красный [II] к 7,0(7,2)-8,8 [II] тёмно-красный
α-Нафтолфталеин к 7,3-8,7 синий
Тимоловый синий [II] к 8,0-9,6 [II] синий
Фенолфталеин[4] [I] к 8,2-10,0 [I] малиново-красный
Тимолфталеин к 9,3(9,4)-10,5(10,6) синий
Ализариновый жёлтый ЖЖ к 10,1-12,0 коричнево-жёлтый
Нильский голубой 10,1-11,1 красный
Диазофиолетовый 10,1-12,0 фиолетовый
Индигокармин 11,6-14,0 жёлтый
Epsilon Blue 11,6-13,0 тёмно-фиолетовый

Взаимодействие с кислотами[править | править код]

Щёлочи, как основания, взаимодействуют с кислотами с образованием соли и воды (реакция нейтрализации). Это одно из самых важных химических свойств щелочей.

Щёлочь + Кислота → Соль + Вода

NaOH+HCl⟶NaCl+h3O{\displaystyle {\mathsf {NaOH+HCl\longrightarrow NaCl+H_{2}O}}};
NaOH+HNO3⟶NaNO3+h3O{\displaystyle {\mathsf {NaOH+HNO_{3}\longrightarrow NaNO_{3}+H_{2}O}}}.

Взаимодействие с кислотными оксидами[править | править код]

Щёлочи взаимодействуют с кислотными оксидами с образованием соли и воды:

Щёлочь + Кислотный оксид → Соль + Вода

Ca(OH)2+CO2⟶CaCO3↓+h3O{\displaystyle {\mathsf {Ca(OH)_{2}+CO_{2}\longrightarrow CaCO_{3}\downarrow +H_{2}O}}};

Взаимодействие с амфотерными оксидами[править | править код]

2KOH+ZnO→toCK2ZnO2+h3O{\displaystyle {\mathsf {2KOH+ZnO{\xrightarrow {t^{o}C}}K_{2}ZnO_{2}+H_{2}O}}}.

Взаимодействие с переходными (амфотерными) металлами[править | править код]

Растворы щелочей взаимодействуют с металлами, которые образуют амфотерные оксиды и гидроксиды (Zn,Al{\displaystyle {\mathsf {Zn,Al}}} и др). Уравнения этих реакций в упрощённом виде могут быть записаны следующим образом:

Zn+2NaOH⟶Na2ZnO2+h3↑{\displaystyle {\mathsf {Zn+2NaOH\longrightarrow Na_{2}ZnO_{2}+H_{2}\uparrow }}};
2Al+2KOH+2h3O⟶2KAlO2+3h3↑{\displaystyle {\mathsf {2Al+2KOH+2H_{2}O\longrightarrow 2KAlO_{2}+3H_{2}\uparrow }}}.

Реально в ходе этих реакций в растворах образуются гидроксокомплексы (продукты гидратации указанных выше солей):

Zn+2NaOH+2h3O⟶Na2[Zn(OH)4]+h3↑{\displaystyle {\mathsf {Zn+2NaOH+2H_{2}O\longrightarrow Na_{2}[Zn(OH)_{4}]+H_{2}\uparrow }}};
2Al+2KOH+6h3O⟶2K[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2KOH+6H_{2}O\longrightarrow 2K[Al(OH)_{4}]+3H_{2}\uparrow }}};

Взаимодействие с растворами солей[править | править код]

Растворы щелочей взаимодействуют с растворами солей, если образуется нерастворимое основание или нерастворимая соль:

Раствор щёлочи + Раствор соли → Новое основание + Новая соль

2NaOH+CuSO4⟶Cu(OH)2↓+Na2SO4{\displaystyle {\mathsf {2NaOH+CuSO_{4}\longrightarrow Cu(OH)_{2}\downarrow +Na_{2}SO_{4}}}};
Ba(OH)2+Na2SO4⟶2NaOH+BaSO4↓{\displaystyle {\mathsf {Ba(OH)_{2}+Na_{2}SO_{4}\longrightarrow 2NaOH+BaSO_{4}\downarrow }}};

Растворимые основания получают различными способами.

Гидролиз щелочных/щёлочноземельных металлов[править | править код]

Получают путём электролиза хлоридов щелочных металлов или действием воды на оксиды щелочных металлов.

Щёлочи широко применяются в различных производствах и медицине; также для дезинфекции прудов в рыбоводстве и как удобрение, в качестве электролита для щелочных аккумуляторов.

Слабощелочная почва в почвоведении — это почва, водородный показатель которой выше 7,3. Хотя кочанная капуста предпочитает именно щелочные почвы, они могут помешать другим растениям. Большинство растений предпочитает слабокислые почвы (с pH от 6,0 до 6,8)[5].

  1. ↑ эх щелок // Словарь Фасмера
  2. ↑ А. С. Арсеньев. Анализ развивающегося понятия. М., «Наука», 1067. С. 332.
  3. ↑ *Столбец «х» — характер индикатора: к—кислота, о—основание.
  4. ↑ Фенолфталеин в сильно щелочной среде обесцвечивается. В среде концентрированной серной кислоты также он даёт красную окраску, обусловленную строением катиона фенолфталеина, хотя и не такую интенсивную. Эти малоизвестные факты могут привести к ошибкам при определении реакции среды.
  5. ↑ Chambers's Encyclopaedia[en]. — 1888.

При написании этой статьи использовался материал из издания «Казахстан. Национальная энциклопедия» (1998—2007), предоставленного редакцией «Қазақ энциклопедиясы» по лицензии Creative Commons BY-SA 3.0 Unported.

ru.wikipedia.org

Щелочи: понятие, свойства и применение

Щелочи — это водорастворимые сильные основания. В настоящее время в химии принята  теория Брёнстеда — Лоури и Льюиса, которая определяет кислоты и основания. В соответствии с этой теорией, кислоты — это вещества, способные отщеплять протон, а основания — отдавать электронную пару OH−.  Можно сказать, что под основаниями понимают соединения, которые при диссоциации в воде образуют только анионы вида OH.  Если совсем просто, то щелочами называют соединения, состоящие из металла и гидроксид-иона OH.

К щелочам принято относить гидроксиды щелочных и щелочно-земельных металлов.

Все щелочи — это основания, но не наоборот, нельзя считать определения «основание» и «щелочь» синонимами.  

Правильное химическое название щелочей — гидроксид (гидроокись), например, гидроокись натрия, гидроксид калия. Часто употребляются также названия, которые сложились исторически. Ввиду того, что щелочи разрушают материалы органического происхождения — кожу, ткани, бумагу, древесину, их называют едкими: например, едкий натр, едкий барий. Однако понятием «едкие щелочи» химики определяют гидроксиды щелочных металлов — лития, натрия, калия, рубидия, цезия.

Свойства щелочей

Щелочи — твердые вещества белого цвета; гигроскопичные, водорастворимые. Растворение в воде сопровождается активным выделением тепла. Вступают в реакции с кислотами, образуя соль и воду. Эта реакция нейтрализации является важнейшей из всех свойств щелочей. Кроме этого, гидроксиды реагируют с кислотными оксидами (образующими кислородосодержащие кислоты), с переходными металлами и их оксидами, с растворами солей.

Гидроксиды щелочных металлов растворяются в метиловом и этиловом спиртах, способны выдерживать температуры до +1000 °С (за исключением гидроксида лития).

Щелочи — активные химические реагенты, поглощающие из воздуха не только водяные пары, но и молекулы углекислого и сернистого газа, сероводорода, диоксида азота. Поэтому хранить гидроксиды следует в герметичной таре или, например, доступ воздуха в сосуд со щелочью организовать через хлоркальциевую трубку. В противном случае хим.реактив после хранения на воздухе будет загрязнен карбонатами, сульфатами, сульфидами, нитратами и нитритами.

Если сравнивать щелочи по химической активности, то она увеличивается при движении по столбцу таблицы Менделеева сверху вниз.

Концентрированные щелочи разрушают стекло, а расплавы щелочей — даже фарфор и платину, поэтому растворы щелочей не рекомендуется хранить в сосудах с пришлифованными стеклянными пробками и кранами, так как пробки и краны может заклинить. Хранят щелочи, обычно, в полиэтиленовых емкостях.

Именно щелочи, а не кислоты, вызывают более сильные ожоги, так как их сложнее смыть с кожи и они проникают глубоко в ткань. Смывать щелочь надо неконцентрированным раствором уксусной кислоты. Работать с ними необходимо в средствах защиты. Щелочной ожог требует немедленного обращения к врачу!

Применение щелочей

— В качестве электролитов.
— Для производства удобрений.
— В медицине, химических, косметических производствах.
— В рыбоводстве для стерилизации прудов.

В магазине «ПраймКемикалсГрупп» вы найдете самые востребованные щелочи по выгодным ценам.

Едкий натр

Самая популярная и востребованная в мире щелочь.

Применяется для омыления жиров в производстве косметических и моющих средств, для изготовления масел в процессе нефтепереработки, в качестве катализатора и реактива в химических реакциях; в пищепроме.

Едкое кали

Применяется для производства мыла, калийных удобрений, электролитов для батареек и аккумуляторов, синтетического каучука. Также — в качестве пищевой добавки; для профессиональной очистки изделий из нержавеющей стали.  

Гидроксид алюминия

Востребован в медицине как отличный адсорбент, антацид, обволакивающее средство; ингредиент вакцин в фармацевтике. Кроме этого, вещество применяется в очистных сооружениях и в процессах получения чистого алюминия.

Гидроокись кальция

Популярная щелочь с очень широким спектром применения, которую в быту знают под названием «гашеная известь». Используется для дезинфекции, смягчения воды, в производстве удобрений, едкого натра, «хлорки», строительных материалов. Применяется для защиты деревьев и деревянных сооружений от вредителей и огня; в пищепроме как пищевая добавка и реактив при производстве сахара.

Гидроокись лития

Востребованное соединение в химпроме как сырье; в стекольной, керамической, радиотехнической индустрии; для производства смазочных материалов, электролитов; для поглощения вредных газов.

Гидроокись бария

Применяется в химпроме как катализатор, а также в пищепроме для очистки жиров, сахара.

В аналитической химии применяются фиксаналы щелочей, которые можно купить у нас:
— стандарт-титр Натрий гидроокись (Натрий гидроксид) 0,1 H
— стандарт-титр Калий гидроокись (Калий гидроксид) 0,1 Н

pcgroup.ru

Щёлочь или щёлок? | Журнал Ярмарки Мастеров

Очень часто в описаниях состава мыла можно встретить иногда щёлок, иногда щёлочь. Казалось бы, 1-2 буквы - незначительно. Но, давайте разберёмся, есть ли различия? Насколько это существенно?

Для этого заглянем в словарь:

Щёлочь - едкое химическое соединение щелочных металлов, дающее при реакции с кислотами соли, и окрашивающее лакмусовую бумагу в синий цвет.

К щелочам относятся хорошо растворимые в воде основания след. металлов:

  • Щелочные металлы - литий Li, натрий Na, калий K, рубидий Rb, цезий Cs и франций Fr.
  • Щёлочноземельные металлы - кальций, стронций, барий, радий.
  • Аммоний.

Щелочные растворы используются как чистящие средства.

А примерами едких щелочей можно назвать едкий кали и едкий натр.

С помощью едких кали и натра можно, например, сделать растворимыми большинство нерастворимых веществ, а самые сильные кислоты и удушливые пары можно благодаря щелочам лишить всей их жгучести и ядовитости.

Едкие щелочи — очень своеобразные вещества.
На вид это беловатые, довольно твердые камни, ничем как будто не примечательные.
Но попробуйте взять едкое кали или натр и зажать его в руке. Вы почувствуете легкое жжение, почти как от прикосновения к крапиве. Долго держать в руке едкие щелочи было бы нестерпимо больно: они могут разъесть кожу и мясо до кости.
Вот почему их называют «едкими», в отличие от других, менее «злых» щелочей — всем известных соды и поташа. Из соды и поташа, кстати сказать, почти всегда и получались едкие натр и кали.

Кому впервые приходилось погрузить пальцы в раствор едкой щёлочи, тот с удивлением заявляет:
— Как мыло!
И это совершенно правильно. Щёлочь — скользкая, как мыло. Больше того: мыло потому и «мыльно» на ощупь, что его изготовляют с помощью щелочей. Раствор едкой щёлочи и на вкус напоминает мыло.

А теперь, что же такое щёлок?

Щёлок - раствор древесной золы, а также некоторых щелочей. Получается по определению, что щёлок может быть двух видов: водный раствор древесной золы и водный же раствор щёлочи.

Для производства мыла лучше всего подходит древесная зола. Причём это должны быть лиственные породы деревьев, так как хвойные породы содержат смолы и их зола не пригодна для таких целей.

А сам щёлок имеет ещё одну разновидность - поташ. Говоря научным языком, карбонат калия.

Это белое кристаллическое вещество, хорошо растворимое в воде. Для получения поташа используют золу из злаков и водорослей, так как именно калия больше всего в растворимой части растительных остатков (белая «зола» от костра — в основном поташ). Поташ применяют для изготовления жидкого мыла. Поташ зарегистрирован в качестве пищевой добавки Е 501.

Слово поташ произошло от нем. Роttаsсhе – то же от Роtt "горшок" и Аsсhе "зола", потому что щелочную золу получали путем кипячения сожженных частей растений в горшке.

Вот так у нас получается: щёлок - разновидность щёлочи, растворённая в воде. А поташ - производное щёлока. И то и другое мы можем отнести к видам щелочей.

www.livemaster.ru

Щелочь

     Щелочь (синоним – алкали) - так называется любой из растворимых гидроксидов щелочных металлов, то есть лития, натрия, калия , рубидия и цезия. Щелочи являются сильными основаниями, они вступают в реакцию с кислотами с получением нейтральных солей. Они едкие и в концентрированном виде являются коррозионными веществами для органических тканей. Термин щелочь также применяется к растворимым гидроксидам таких щелочноземельных металлов, как кальций, стронций и барий, а также к гидроксиду аммония . Название вещества - щелочь , первоначально применялось к золе сожженных растений, содержащих натрий или калий, из которых можно было выщелачивать оксиды натрия или калия.

   Среди всех производимых промышленностью щелочей наибольшая доля таких производств приходится на выработку кальцинированной соды (Na2CO3 -карбонат натрия ) и каустической соды (NaOH-гидроксид натрия ). Следующими по объему производства идут в списке щелочи гидроксид калия (KOH-едкий кали) и гидроксид магния (Mg(OH)2-магния гидрат).

   Производство широкого спектра потребительских товаров зависит от использования щелочей на определенном этапе. Кальцинированная и каустическая соды имеют важное значение для производства стекла, мыла, вискозы, целлофана, бумаги, целлюлозы, моющих средств, текстиля, умягчителей воды, в производстве некоторых металлов ( в особенности алюминия), бикарбоната соды, бензина и многих других нефтепродуктов и химических веществ.

 

Немного исторических моментов из истории получения щелочи.

   Люди на протяжении столетий используют щелочь, получая ее сначала от выщелачивания (водных растворов) некоторых пустынных земель. До конца 18 века выщелачивание из древесной золы или морской водоросли было основным источником получения щелочей. В 1775 году Французская Академия наук предложила денежные призы за новые методы производства щелочей. Премия за кальцинированную соду была присуждена французу Николасу Леблану , который в 1791 году запатентовал процесс превращения хлорида натрия в карбонат натрия.

   Лебланский способ производства доминировал в мировом производстве до конца 19-го века, но после первой мировой войны был полностью вытеснен другим методом конверсии соли, который был усовершенствован в 1860-х годах Эрнестом Солве из Бельгии. В конце XIX века появились электролитические методы производства каустической соды, объемы которых быстро росли.

  По методу Солве, аммиачно-содовый процесс производства кальцинированной соды протекал следующим образом: поваренная соль в виде сильного рассола химически обрабатывалась для устранения примесей кальция и магния и затем насыщалась рециркулирующим газом аммиака в башнях. После, аммиачный рассол насыщался газом с использованием газообразного диоксида углерода при умеренном давлении в башне другого типа. Эти два процесса дают бикарбонат аммония и хлорид натрия, двойное разложение которого дает желаемый бикарбонат натрия, а также хлорид аммония. Затем бикарбонат натрия нагревают до разложения его до необходимого карбоната натрия. Аммиак, вовлеченный в процесс, почти полностью восстанавливается путем обработки хлоридом аммония с известью, с получением аммиака и хлорида кальция. Восстановленный аммиак затем повторно используют в описанных выше процессах.

   Электролитическое производство каустической соды включает электролиз сильного солевого раствора в электролитической ячейке . (Электролиз - это разрушение соединения в растворе в его составляющие с помощью электрического тока для того, чтобы вызвать химическое изменение.) Электролиз хлорида натрия дает хлор, гидроксид натрия, либо металлический натрий. Гидроксид натрия в некоторых случаях конкурирует с карбонатом натрия в одних и тех же процессах применений. И в любом случае оба являются взаимопревращаемыми с помощью довольно не сложных процессов. Хлорид натрия может быть

превращен в щелочь одним из двух процессов, причем разница между ними заключается лишь в том, что процесс аммиачно-содовой реакции дает хлор в виде хлорида кальция, соединения с небольшим экономическим значением, тогда как электролитические процессы производят элементарный хлор , который имеет бесчисленное применение в химической промышленности.

   В нескольких местах в мире существуют значительные запасы минеральной формы кальцинированной соды, известной как природная щелочь. На таких месторождениях производят большую часть природной щелочи в мире из обширных месторождений в подземных шахтах.

Природный натрий металлический.

 

      Прочитайте статью Щелочи (источник "Энциклопедический словарь химика")и получите больше представления о том что такое щелочь, или посмотрите видеоролик об этом химическом реактиве Щелочи. 

 

Использование щелочи в окружающей нас среде

   Щелочь снискала широкое применение в нашей жизни. Благодаря щелочи можно в той или иной форме добиться смягчения воды и удалить из нее примеси, такие как марганец, фториды и органические танины. В тяжелых отраслях промышленности используют щелочь в виде извести для поглощения и нейтрализации оксидов серы в выбросах в атмосферу, тем самым уменьшая вероятность выпадения кислотных осадков. Диоксид серы, производимый промышленными предприятиями и выпускаемый в атмосферу, возвращается на землю в виде кислотных дождей или серной кислоты. Такие территории, подвергшихся воздействию кислотных дождей, обрабатываются с помощью авиации препаратами, в состав которых входит щелочь. Это позволяет контролировать и нейтрализовывать критический уровень рН воды и почвы на участках, где произошли такие техногенные выбросы. Внесение щелочи в отходы и сточные воды, поддерживая правильный уровень рН в окислительных процессах при их разложении. Стабилизирует образования осадка в сточных водах и уменьшает запах или образования патогенных бактерий. Обработанный негашеной известью ил из сточных водоемов, соответствует экологическим нормам, что делает его пригодным в дальнейшем в использовании в качестве удобрения на сельскохозяйственных землях.

 

Промышленное применение щелочи

    В промышленных и горных работах применение щелочей в сточных водах помогает нейтрализовать вредные соединения и произвести их очистку. Обработка избыточной щелочью, повышает рН воды до 10,5-11 и может дезинфицировать воду и удалять тяжелые металлы. Щелочи, такие как известь, являются ключевыми в химическом производстве карбида кальция, лимонной кислоты, нефтехимии и магнезии. В бумажной промышленности карбонат кальция является каустифицирующим агентом для отбеливания. Сталелитейная промышленность зависит от извести в качестве компонента для удаления примесей, таких как газообразный монооксид углерода, кремния, марганца и фосфора.

 

Моющие средства образованные щелочью

    Щелочные моющие средства помогают при очистке поверхностей с сильными загрязнениями. Эти экономичные, водорастворимые щелочи с рН от 9 до 12,5 могут нейтрализовать кислоты в различных типах грязи и отложениях.

 

Щелочь в производстве стекла и керамики

   Щелочь является основным сырьем в производстве стекла. Известняк, а также песок, кальцинированная сода, известь и другие химикаты, обжигаются при чрезвычайно высоких температурах и превращаются в расплавленную массу. Стеклодувы и гончары используют щелочи для глазурей и флюсов, которые реагируют с кислотами с образованием силикатов (стекла) при нагревании. Концентрированные щелочи создают более насыщенный цвет в глазури.

 

Литература о щелочи   

    В книге И. Нечаева "Рассказы об элементах", изданной в 1940 году, доступным и понятным языком для обывателя рассказывается о том, что такое щелочь и чем она отличается от другого едкого вещества - кислоты. Выдержка из текста:

   "Среди многочисленных веществ, которыми химики с давних времен пользовались в своих лабораториях, почетное место всегда занимали едкие щелочи — едкое кали и едкий натр. Сотни различных химических реакций осуществляются в лабораториях, на заводах и в быту при участии щелочей. С помощью едких кали и натра можно, например, сделать растворимыми большинство нерастворимых веществ, а самые сильные кислоты и удушливые пары можно благодаря щелочам лишить всей их жгучести и ядовитости.

   Едкие щелочи — очень своеобразные вещества. На вид это беловатые, довольно твердые камни, ничем как будто не примечательные. Но попробуйте взять едкое кали или натр и зажать его в руке. Вы почувствуете легкое жжение, почти как от прикосновения к крапиве. Долго держать в руке едкие щелочи было бы нестерпимо больно: они могут разъесть кожу и мясо до кости. Вот почему их называют «едкими», в отличие от других, менее «злых» щелочей — всем известных соды и поташа. Из соды и поташа, кстати сказать, почти всегда и по лучались едкие натр и кали.

   У едких щелочей сильнейшее влечение к воде. Оставьте кусок совершенно сухого едкого кали или натра на воздухе. Через короткое время на его поверхности неизвестно откуда появится жидкость, потом он весь станет мокрым и рыхлым и под конец расползется бесформенной массой, как кисель. Это из воздуха щелочь притягивает к себе пары воды и образует с влагой густой раствор. Кому впервые приходится погрузить пальцы в раствор едкой щелочи, тот с удивлением заявляет: — Как мыло! И это совершенно правильно. Щелочь — скользкая, как мыло. Больше того: мыло потому и «мыльно» на ощупь, что его изготовляют с помощью щелочей. Раствор едкой щелочи и на вкус напоминает мыло.

   Но химик узнаёт едкую щелочь не по вкусу, а по тому, как это вещество ведет себя с краской лакмус и с кислотами. Бумажка, про питанная синей краской лакмус, мгновенно краснеет, когда ее опус кают в кислоту; а если этой покрасневшей бумажкой дотронуться до щелочи, то она тотчас же опять становится синей. Едкая щелочь и кислота не могут мирно существовать рядом ни одной секунды. Они тотчас же вступают в бурную реакцию, шипя и разогреваясь, и уничтожают друг друга до тех пор, пока в растворе не останется ни крупинки щелочи или ни капли кислоты. Только тогда наступает успо коение. Щелочь и кислота «нейтрализовали» друг друга, говорят в таких случаях. От соединения их между собой получается «нейтральная» соль — ни кислая, ни едкая. Так, например, от соединения жгучей соляной кислоты с едким натром получается обыкновеннейшая поваренная соль."

 

Отличительные признаки щелочи.

    Из выше прочитанного мы уже знаем, что противоположностью щелочи является кислота. Вместо горького вкуса присущего щелочи, кислоты, как правило, имеют кислый вкус. Примером могут служить пищевые продукты, такие как: лимоны или фруктовый уксус (разбавленный), посути являющимися кислотными продуктами и обладающими в составе кислотой. Мы можем определить, является ли вещество щелочью или кислотой, зная ее рН. Уровень рН измеряется с помощью шкалы рН ; эта шкала колеблется от 0-14, и эти цифры показывают нам, является ли вещество щелочью или кислотой. Чистая дистиллированная вода имеет уровень pH 7 и называется нейтральным веществом (находится прямо посредине шкалы). Любое вещество, которое имеет рН выше 7, представляет собой щелочное вещество, которое также может называться щелочью. И, любое другое вещество, которое имеет рН ниже 7, представляет собой кислоту.

 

Почему вещество щелочное?

    Таким образом, нам уже известно, что рН уровень представляет собой шкалу, значения которой колеблятся от 0-14 и указывают, является ли вещество щелочью или кислотой. Однако мы действительно не знаем, почему. Давайте рассмотрим этот вопрос более детально.

   Уровень рH вещества зависит от того, как атомы расположены и объединены в веществе. Чистая вода находится прямо в середине шкалы и имеет pH 7. Это означает, что она содержит равное количество атомов водорода (H +) и гидроксидных атомов (OH-). Когда вещество имеет больше атомов водорода (Н +), это кислота. Когда вещество имеет больше гидроксидных атомов (OH-), оно является щелочным.

 

Где купить щелочь?

   Купить щелочь в Новосибирске со степенью очистки ЧДА (чистая для анализов) в магазине "Для дела" можно на странице заказов: едкий натр NaOH или едкий кали KOH. Для иногородних покупателей товар может быть отправлен Почтой РФ или транспортными компаниями.

 

Авторские права


   Права на данную статью принадлежат  администратору сайта dlyadela.ru  : Фарафонову Константину Владимировичу.  Для подтверждения авторских прав была произведена процедура депонирования материалов опубликованного контента.  Любое копирования материалов этой статьи не допускается, без письменного согласия правообладателя.  Оценочная стоимость контета страницы https://dlyadela.ru/page/scheloch установлена в размере 100 долларов США.
   Лицо, несанкционированно осуществившее частичное или полное копирование представленных на странице материалов и разместившее их в последствие на сторонних интернет-ресурсах, выражает свое согласие выплатить правообладателю пятикратную оценочную стоимость украденного контента.
   Если вы желаете использовать материалы нашего сайта, пожалуйста, свяжитесь с нами.

dlyadela.ru

Щелочные металлы — Википедия

Группа → 1
↓ Период
2
3
4
5
37

Рубидий

[Kr]5s1
6
7
87

Франций

[Rn]7s1

Щелочны́е мета́ллы — элементы 1-й группы периодической таблицы химических элементов (по устаревшей классификации — элементы главной подгруппы I группы)[1]: литий Li, натрий Na, калий K, рубидий Rb, цезий Cs, франций Fr, унуненний Uue. При растворении щелочных металлов в воде образуются растворимые гидроксиды, называемые щелочами.

Общая характеристика щелочных металлов[править | править код]

В Периодической системе они следуют сразу за инертными газами, поэтому особенность строения атомов щелочных металлов заключается в том, что они содержат один электрон на внешнем энергетическом уровне: их электронная конфигурация ns1. Очевидно, что валентные электроны щелочных металлов могут быть легко удалены, потому что атому энергетически выгодно отдать электрон и приобрести конфигурацию инертного газа. Поэтому для всех щелочных металлов характерны восстановительные свойства. Это подтверждают низкие значения их потенциалов ионизации (потенциал ионизации атома цезия — самый низкий) и электроотрицательности (ЭО). Как следствие, в большинстве соединений щелочные металлы присутствуют в виде однозарядных катионов. Однако существуют и соединения, где щелочные металлы представлены анионами (см. Алкалиды).

Некоторые атомные и физические свойства щелочных металлов

Атомный
номер
Название,
символ
Число природных изотопов Атомная масса Энергия ионизации, кДж·моль−1 Сродство к электрону, кДж·моль−1 ЭО ΔHдисс, кДж·моль−1 Металл. радиус, нм Ионный радиус (КЧ 6), нм tпл,
°C
tкип,
°C
Плотность,
г/см³
ΔHпл, кДж·моль−1 ΔHкип, кДж·моль−1 ΔHобр, кДж·моль−1
3 Литий Li 2 6,941(2) 520,2 59,8 0,98 106,5 0,152 0,076 180,6 1342 0,534 2,93 148 162
11 Натрий Na 1 22,989768(6) 495,8 52,9 0,99 73,6 0,186 0,102 97,8 883 0,968 2,64 99 108
19 Калий К 2+1а 39,0983(1) 418,8 46,36 0,82 57,3 0,227 0,138 63,07 759 0,856 2,39 79 89,6
37 Рубидий Rb 1+1а 85,4687(3) 403,0 46,88 0,82 45,6 0,248 0,152 39,5 688 1,532 2,20 76 82
55 Цезий Cs 1 132,90543(5) 375,7 45,5 0,79 44,77 0,265 0,167 28,4 671 1,90 2,09 67 78,2
87 Франций Fr 2а (223) 380 (44,0) 0,7 0,180 20 690 1,87 2 65
119 Унуненний Uue

а Радиоактивные изотопы: 40K, T1/2 = 1,277·109 лет; 87Rb, T1/2 = 4,75·1010 лет; 223Fr, T1/2 = 21,8 мин; 224Fr, T1/2 = 3,33 мин.

Все металлы этой подгруппы имеют серебристо-белый цвет (кроме серебристо-жёлтого цезия), они очень мягкие, их можно резать скальпелем. Литий, натрий и калий легче воды и плавают на её поверхности, реагируя с ней.

Многие минералы содержат в своём составе щелочные металлы. Например, ортоклаз, или полевой шпат, состоит из алюмосиликата калия K2[Al2Si6O16], аналогичный минерал, содержащий натрий — альбит — имеет состав Na2[Al2Si6O16]. В морской воде содержится хлорид натрия NaCl, а в почве — соли калия — сильвин KCl, сильвинит NaCl·KCl, карналлит KCl·MgCl2·6H2O, полигалит K2SO4·MgSO4·CaSO4·2H2O.

Химические свойства щелочных металлов[править | править код]

Из-за высокой химической активности щелочных металлов по отношению к воде, кислороду, и иногда даже и азоту (Li) их хранят под слоем керосина. Чтобы провести реакцию со щелочным металлом, кусочек нужного размера аккуратно отрезают скальпелем под слоем керосина, в атмосфере аргона тщательно очищают поверхность металла от продуктов его взаимодействия с воздухом и только потом помещают образец в реакционный сосуд.

Взаимодействие с водой[править | править код]

Важное свойство щелочных металлов — их высокая активность по отношению к воде. Наиболее спокойно (без взрыва) реагирует с водой литий:

2 Li+2 h3O⟶2 LiOH+ h3↑{\displaystyle {\mathsf {2\ Li+2\ H_{2}O\longrightarrow 2\ LiOH+\ H_{2}\uparrow }}}

При проведении аналогичной реакции натрий горит жёлтым пламенем и происходит небольшой взрыв. Калий ещё более активен: в этом случае взрыв гораздо сильнее, а пламя окрашено в фиолетовый цвет.

Взаимодействие с кислородом[править | править код]

Продукты горения щелочных металлов на воздухе имеют разный состав в зависимости от активности металла.

  • Только литий сгорает на воздухе с образованием оксида стехиометрического состава:
4 Li+ O2⟶2 Li2O{\displaystyle {\mathsf {4\ Li+\ O_{2}\longrightarrow 2\ Li_{2}O}}}
2 Na+ O2⟶ Na2O2{\displaystyle {\mathsf {2\ Na+\ O_{2}\longrightarrow \ Na_{2}O_{2}}}}
  • В продуктах горения калия, рубидия и цезия содержатся в основном надпероксиды:
K+ O2⟶ KO2{\displaystyle {\mathsf {K+\ O_{2}\longrightarrow \ KO_{2}}}}
Rb+ O2⟶ RbO2{\displaystyle {\mathsf {Rb+\ O_{2}\longrightarrow \ RbO_{2}}}}
Cs+ O2⟶ CsO2{\displaystyle {\mathsf {Cs+\ O_{2}\longrightarrow \ CsO_{2}}}}

Для получения оксидов натрия и калия нагревают смеси гидроксида, пероксида или надпероксида с избытком металла в отсутствие кислорода:

2 Na+2 NaOH⟶2 Na2O+ h3↑{\displaystyle {\mathsf {2\ Na+2\ NaOH\longrightarrow 2\ Na_{2}O+\ H_{2}\uparrow }}}
2 Na+ Na2O2⟶2 Na2O{\displaystyle {\mathsf {2\ Na+\ Na_{2}O_{2}\longrightarrow 2\ Na_{2}O}}}
3 K+ KO2⟶2 K2O{\displaystyle {\mathsf {3\ K+\ KO_{2}\longrightarrow 2\ K_{2}O}}}

Для кислородных соединений щелочных металлов характерна следующая закономерность: по мере увеличения радиуса катиона щелочного металла возрастает устойчивость кислородных соединений, содержащих пероксид-ион О2−
2 и надпероксид-ион O−
2.

Для тяжёлых щелочных металлов характерно образование довольно устойчивых озонидов состава ЭО3. Все кислородные соединения имеют различную окраску, интенсивность которой увеличивается в ряду от Li до Cs:

Формула
кислородного соединения
Цвет
Li2O Белый
Na2O Белый
K2O Желтоватый
Rb2O Жёлтый
Cs2O Оранжевый
Na2O2 Светло-
жёлтый
KO2 Оранжевый
RbO2 Тёмно-
коричневый
CsO2 Жёлтый

Оксиды щелочных металлов обладают всеми свойствами, присущими основным оксидам: они реагируют с водой, кислотными оксидами и кислотами:

Li2O+ h3O⟶2 LiOH{\displaystyle {\mathsf {Li_{2}O+\ H_{2}O\longrightarrow 2\ LiOH}}}
K2O+ SO3⟶ K2SO4{\displaystyle {\mathsf {K_{2}O+\ SO_{3}\longrightarrow \ K_{2}SO_{4}}}}
Na2O+2 HNO3⟶2 NaNO3+ h3O{\displaystyle {\mathsf {Na_{2}O+2\ HNO_{3}\longrightarrow 2\ NaNO_{3}+\ H_{2}O}}}

Пероксиды и надпероксиды проявляют свойства сильных окислителей:

Na2O2+2 NaI+2 h3SO4⟶ I2+2 Na2SO4+2 h3O{\displaystyle {\mathsf {Na_{2}O_{2}+2\ NaI+2\ H_{2}SO_{4}\longrightarrow \ I_{2}+2\ Na_{2}SO_{4}+2\ H_{2}O}}}

Пероксиды и надпероксиды интенсивно взаимодействуют с водой, образуя гидроксиды:

Na2O2+2 h3O⟶2 NaOH+ h3O2{\displaystyle {\mathsf {Na_{2}O_{2}+2\ H_{2}O\longrightarrow 2\ NaOH+\ H_{2}O_{2}}}}
2 KO2+2 h3O⟶2 KOH+ h3O2+ O2↑{\displaystyle {\mathsf {2\ KO_{2}+2\ H_{2}O\longrightarrow 2\ KOH+\ H_{2}O_{2}+\ O_{2}\uparrow }}}

Взаимодействие с другими веществами[править | править код]

Щелочные металлы реагируют со многими неметаллами. При нагревании они соединяются с водородом с образованием гидридов, с галогенами, серой, азотом, фосфором, углеродом и кремнием с образованием, соответственно, галогенидов, сульфидов, нитридов, фосфидов, карбидов и силицидов:

2 Na+ h3⟶2 NaH{\displaystyle {\mathsf {2\ Na+\ H_{2}\longrightarrow 2\ NaH}}}
2 Na+ Cl2⟶2 NaCl{\displaystyle {\mathsf {2\ Na+\ Cl_{2}\longrightarrow 2\ NaCl}}}
2 K+ S⟶ K2S{\displaystyle {\mathsf {2\ K+\ S\longrightarrow \ K_{2}S}}}
6 Li+ N2⟶2 Li3N{\displaystyle {\mathsf {6\ Li+\ N_{2}\longrightarrow 2\ Li_{3}N}}}
2 Li+2 C⟶ Li2C2{\displaystyle {\mathsf {2\ Li+2\ C\longrightarrow \ Li_{2}C_{2}}}}

При нагревании щелочные металлы способны реагировать с другими металлами, образуя интерметаллиды. Активно (со взрывом) щелочные металлы реагируют с кислотами.

Щелочные металлы растворяются в жидком аммиаке и его производных — аминах и амидах:

2 Na+2 Nh4⟶2 NaNh3+ h3↑{\displaystyle {\mathsf {2\ Na+2\ NH_{3}\longrightarrow 2\ NaNH_{2}+\ H_{2}\uparrow }}}

При растворении в жидком аммиаке щелочной металл теряет электрон, который сольватируется молекулами аммиака и придаёт раствору голубой цвет. Образующиеся амиды легко разлагаются водой с образованием щёлочи и аммиака:

KNh3+ h3O⟶ KOH+ Nh4↑{\displaystyle {\mathsf {KNH_{2}+\ H_{2}O\longrightarrow \ KOH+\ NH_{3}\uparrow }}}

Щелочные металлы взаимодействуют с органическими веществами спиртами (с образованием алкоголятов) и карбоновыми кислотами (с образованием солей):

2 Na+2 Ch4Ch3OH⟶2 Ch4Ch3ONa+ h3↑{\displaystyle {\mathsf {2\ Na+2\ CH_{3}CH_{2}OH\longrightarrow 2\ CH_{3}CH_{2}ONa+\ H_{2}\uparrow }}}
2 Na+2 Ch4COOH⟶2 Ch4COONa+ h3↑{\displaystyle {\mathsf {2\ Na+2\ CH_{3}COOH\longrightarrow 2\ CH_{3}COONa+\ H_{2}\uparrow }}}

Качественное определение щелочных металлов[править | править код]

Поскольку потенциалы ионизации щелочных металлов невелики, то при нагревании металла или его соединений в пламени атом ионизируется, окрашивая пламя в определённый цвет:

Окраска пламени щелочными металлами
и их соединениями

Щелочной металл Цвет пламени
Li Карминно-красный
Na Жёлтый
K Фиолетовый
Rb Буро-красный
Cs Фиолетово-красный

Электролиз расплавов галогенидов[править | править код]

Для получения щелочных металлов используют в основном электролиз расплавов их галогенидов, чаще всего — хлоридов, образующих природные минералы:

2 LiCl⟶2 Li+ Cl2↑{\displaystyle {\mathsf {2\ LiCl\longrightarrow 2\ Li+\ Cl_{2}\uparrow }}}
катод: Li++e⟶Li{\displaystyle {\mathsf {Li^{+}}}+e\longrightarrow {\mathsf {Li}}}
анод: 2Cl−−2e⟶Cl2↑{\displaystyle {\mathsf {2Cl^{-}}}-2e\longrightarrow {\mathsf {Cl_{2}}}\uparrow }

Электролиз расплавов гидроксидов[править | править код]

Иногда для получения щелочных металлов проводят электролиз расплавов их гидроксидов:

4 NaOH⟶4 Na+2 h3O+ O2↑{\displaystyle {\mathsf {4\ NaOH\longrightarrow 4\ Na+2\ H_{2}O+\ O_{2}\uparrow }}}
катод: Na++e⟶Na{\displaystyle {\mathsf {Na^{+}}}+e\longrightarrow {\mathsf {Na}}}
анод: 4OH−−4e⟶2h3O+O2↑{\displaystyle {\mathsf {4OH^{-}}}-4e\longrightarrow {\mathsf {2H_{2}O+O_{2}}}\uparrow }

Восстановление из галогенидов[править | править код]

Щелочной металл может быть восстановлен из соответствующего хлорида или бромида кальцием, магнием, кремнием и др. восстановителями при нагревании под вакуумом до 600—900 °C:

2 MCl+ Ca⟶2 M↑+ CaCl2{\displaystyle {\mathsf {2\ MCl+\ Ca\longrightarrow 2\ M\uparrow +\ CaCl_{2}}}}

Чтобы реакция пошла в нужную сторону, образующийся свободный щелочной металл (M) должен удаляться путём отгонки. Аналогично возможно восстановление цирконием из хромата. Известен способ получения натрия восстановлением из карбоната углём при 1000 °C в присутствии известняка.[источник не указан 3251 день]

Поскольку щелочные металлы в электрохимическом ряду напряжений находятся левее водорода, то электролитическое получение их из водных растворов солей невозможно; в этом случае образуются соответствующие щёлочи и водород.

Гидроксиды[править | править код]

Для получения гидроксидов щелочных металлов в основном используют электролитические методы. Наиболее крупнотоннажным является производство гидроксида натрия электролизом концентрированного водного раствора поваренной соли:

2 NaCl+2 h3O⟶ h3↑+ Cl2↑+2 NaOH{\displaystyle {\mathsf {2\ NaCl+2\ H_{2}O\longrightarrow \ H_{2}\uparrow +\ Cl_{2}\uparrow +2\ NaOH}}}
катод: 2 H++2 e⟶ h3↑{\displaystyle 2\ {\mathsf {H^{+}}}+2\ e\longrightarrow \ {\mathsf {H_{2}}}\uparrow }
анод: 2 Cl−−2 e⟶ Cl2↑{\displaystyle 2\ {\mathsf {Cl^{-}}}-2\ e\longrightarrow \ {\mathsf {Cl_{2}}}\uparrow }

Прежде щёлочь получали реакцией обмена:

Na2CO3+ Ca(OH)2⟶ CaCO3↓+2 NaOH{\displaystyle {\mathsf {Na_{2}CO_{3}+\ Ca(OH)_{2}\longrightarrow \ CaCO_{3}\downarrow +2\ NaOH}}}

Получаемая таким способом щёлочь была сильно загрязнена содой Na2CO3.

Гидроксиды щелочных металлов — белые гигроскопичные вещества, водные растворы которых являются сильными основаниями. Они участвуют во всех реакциях, характерных для оснований — реагируют с кислотами, кислотными и амфотерными оксидами, амфотерными гидроксидами:

2 LiOH+ h3SO4⟶ Li2SO4+2 h3O{\displaystyle {\mathsf {2\ LiOH+\ H_{2}SO_{4}\longrightarrow \ Li_{2}SO_{4}+2\ H_{2}O}}}
2 KOH+ CO

ru.wikipedia.org

формула, свойства, применение :: SYL.ru

Каждый сталкивался с таким понятием, как щелочь, но не каждый может точно сказать, что же это такое. Особенно это относится к тем, кто давно окончил школу и начал забывать уроки химии. Что же это за вещество? Какова формула щелочи в химии? Каковы ее свойства? Рассмотрим все эти вопросы в данной статье.

Определение и основная формула

Начнем с определения. Щелочью называется хорошо растворимое в воде вещество, гидроксид щелочного (1-ая группа, основная подгруппа в таблице Менделеев) или щелочноземельного (2-ая группа, основная подгруппа в таблице Менделеева) металла. Стоит заметить, что бериллий и магний, хотя и принадлежат к щелочным металлам, щелочей не образуют. Их гидроксиды относят к основаниям.

Щелочи - самые сильные основания, растворение которых в воде сопровождается тепловыделением. Примером этого служит бурная реакция с водой гидроксида натрия. Из всех щелочей наименее растворим в воде гидроксид кальция (известный также как гашеная известь), который в чистом виде представляет собой порошок белого цвета.

Из определения можно сделать вывод, что химическая формула щелочи - ROH, где R - щелочноземельный (кальций, стронций, радий, барий) или щелочной (натрий, калий, литий, цезий, франций, рубидий) металл. Приведем некоторые примеры щелочей: NaOH, KOH, CsOH, RbOH.

Реакции

Абсолютно все щелочи реагируют с кислотами. Реакция протекает так же, как кислоты и основания - с образованием соли и воды. Пример:

NaOH+HCl=NaCl+H2O

Приведенная реакция - соляная кислота + щелочь. Формулы реакций различных щелочей с кислотами:

КОН+HCl=KCl+H2O

NaOH+HNO3=NaNO3+H2O

Помимо кислот, щелочи реагируют также с кислотными оксидами (SO2, SO3, CO2). Реакция проходит по тому же механизму, что и щелочи с кислотой - в результате взаимодействия образуется соль и вода.

Щелочи взаимодействуют и с амфотерными оксидами (ZnO, Al2O3). При этом образуются нормальные или комплексные соли. Самая типичная из таких реакций оксид цинка + едкая щелочь. Формула такой реакции:

2NaOH+ZnO=Na2ZnO2+H2O

В показанной реакции образуется нормальная соль натрия Na2ZnO2 и вода.

Реакции щелочей с амфотерными металлами протекают по тому же механизму. Приведем в качестве примера реакцию алюминий + щелочь. Формула реакции:

2KOH+2Al+6H2O=2K(Al(OH)4)+3H2

Это пример реакции с образованием комплексной соли.

Взаимодействие с индикаторами

Для определения pH исследуемого раствора используются специальные химические вещества - индикаторы, которые меняют свой цвет в зависимости от значения показателя водорода в среде. Самый распространенный индикатор, используемый в химических исследованиях, - лакмус. В щелочной среде он приобретет интенсивный синий цвет.

Другой доступный индикатор, фенолфталеин, в щелочной среде приобретает малиновый окрас. Однако в очень концентрированном растворе (показатель водорода близок к 14) фенолфталеин остается бесцветным, как и в нейтральной среде. Потому лакмус при работе с концентрированными щелочами использовать предпочтительнее.

Метиловый оранжевый индикатор в щелочной среде приобретает желтый окрас, при уменьшении pH среды цвет меняется от желтого до оранжевого и красного.

Физические свойства щелочей

Помимо этого, щелочи также хорошо растворяются в этаноле. Концентрированные и умеренные растворы имеют pH от 7.1 и выше. Растворы щелочей мыльные на ощупь. Концентрированные составы - довольно едкие химические соединения, контакт с которыми вызывает химические ожоги кожи, глаз, любых слизистых оболочек, поэтому работать с ними следует осторожно. Воздействие едкого вещества можно нейтрализовать раствором кислоты.

Щелочи могут находиться как в твердом, так и в жидком состоянии. Гидроксид натрия - самая распространенная щелочь (формула NaOH), которая в твердом состоянии представляет собой вещество белого света.

Гидроксид кальция при нормальных условиях - белый порошок. Гидроксиды радия и бария в твердом агрегатном состоянии - бесцветные кристаллы. Гидроксиды стронция и лития также бесцветны. Все твердые щелочи поглощают воду из воздуха. Гидроксид цезия - самая сильная щелочь (формула CsOH). Щелочные свойства металлов 1-ой группы основной подгруппы возрастают сверху вниз. Эти вещества нашли применение в химической промышленности. В основном их используют в щелочных аккумуляторах в качестве электролитов. Чаще всего применяют гидроксиды калия и натрия.

Химический ожог щелочью

При использовании неразбавленных щелочей всегда стоит помнить, что они являются едкими веществами, которые при попадании на открытые участки тела вызывают покраснение, зуд, жжение, отек, в тяжелых случаях образуются пузыри. При длительном контакте такого опасного состава со слизистой органов зрения возможно наступление слепоты.

При химическом ожоге щелочью необходимо промыть пораженное место водой и очень слабым раствором кислоты - лимонной или уксусной. Даже незначительное количество едкой щелочи может вызвать обширное поражение кожи и ожог слизистых, поэтому с такими веществами стоит обращаться аккуратно и держать подальше от детей.

www.syl.ru

Гидроксид натрия — Википедия

Гидрокси́д на́трия (лат. Nátrii hydroxídum; другие названия — каустическая сода, едкий натр) — неорганическое химическое вещество, самая распространённая щёлочь, химическая формула NaOH. В год в мире производится и потребляется около 57 миллионов тонн едкого натра.

Интересна история тривиальных названий как гидроксида натрия, так и других щелочей. Название «едкая щёлочь» обусловлено свойством разъедать кожу (вызывая сильные ожоги), бумагу и другие органические вещества. До XVII века щёлочью (фр. alkali) называли также карбонаты натрия и калия. В 1736 году французский учёный Анри Дюамель дю Монсо впервые различил эти вещества: гидроксид натрия стали называть каустической содой, карбонат натрия — кальцинированной содой, а карбонат калия — поташом. В настоящее время содой принято называть натриевые соли угольной кислоты. В английском и французском языках слово sodium означает натрий, potassium — калий.

Гидроксид натрия — белое твёрдое вещество. Сильно гигроскопичен, на воздухе «расплывается», активно поглощая пары воды из воздуха. Хорошо растворяется в воде, при этом выделяется большое количество теплоты. Раствор едкого натра мылок на ощупь.

Термодинамика растворов

ΔH0 растворения для бесконечно разбавленного водного раствора −44,45 кДж/моль.

Из водных растворов при +12,3…+61,8 °C кристаллизуется моногидрат (ромбическая сингония), температура плавления +65,1 °C; плотность 1,829 г/см³; ΔH0обр −425,6 кДж/моль), в интервале от −28 до −24 °C — гептагидрат, от −24 до −17,7 °C — пентагидрат, от −17,7 до −5,4 °C — тетрагидрат (α-модификация). Растворимость в метаноле 23,6 г/л (t = +28 °C), в этаноле 14,7 г/л (t = +28 °C). NaOH·3,5Н2О (температура плавления +15,5 °C).

Гидроксид натрия (едкая щёлочь) — сильное химическое основание (к сильным основаниям относят гидроксиды, молекулы которых полностью диссоциируют в воде), к ним относят гидроксиды щелочных и щёлочноземельных металлов подгрупп Iа и IIа периодической системы Д. И. Менделеева, KOH (едкое кали), Ba(OH)2 (едкий барит), LiOH, RbOH, CsOH, а также гидроксид одновалентного таллия TlOH. Щёлочность (основность) определяется валентностью металла, радиусом внешней электронной оболочки и электрохимической активностью: чем больше радиус электронной оболочки (увеличивается с порядковым номером), тем легче металл отдаёт электроны, и тем выше его электрохимическая активность и тем левее располагается элемент в электрохимическом ряду активности металлов, в котором за ноль принята активность водорода.

Водные растворы NaOH имеют сильную щелочную реакцию (pH 1%-раствора = 13,4). Основными методами определения щелочей в растворах являются реакции на гидроксид-ион (OH), (c фенолфталеином — малиновое окрашивание и метиловым оранжевым (метилоранжем) — жёлтое окрашивание). Чем больше гидроксид-ионов находится в растворе, тем сильнее щёлочь и тем интенсивнее окраска индикатора.

Гидроксид натрия вступает в следующие реакции:

с кислотами, амфотерными оксидами и гидроксидами
NaOH+HCl→NaCl+h3O{\displaystyle {\mathsf {NaOH+HCl\rightarrow NaCl+H_{2}O}}}
NaOH+h3S→NaHS+h3O{\displaystyle {\mathsf {NaOH+H_{2}S\rightarrow NaHS+H_{2}O}}} (кислая соль, при отношении 1:1)
2NaOH+h3S→Na2S+2h3O{\displaystyle {\mathsf {2NaOH+H_{2}S\rightarrow Na_{2}S+2H_{2}O}}} (в избытке NaOH)

Общая реакция в ионном виде:

OH−+H+→h3O{\displaystyle {\mathsf {OH^{-}+H^{+}\rightarrow H_{2}O}}}
  • с амфотерными оксидами которые обладают как основными, так и кислотными свойствами, и способностью реагировать с щелочами, как с твёрдыми при сплавлении:
2NaOH+ZnO →500−600oC Na2ZnO2+h3O{\displaystyle {\mathsf {2NaOH+ZnO\ {\xrightarrow[{}]{500-600^{o}C}}\ Na_{2}ZnO_{2}+H_{2}O}}}
2NaOH+ZnO+h3O→Na2[Zn(OH)4]{\displaystyle {\mathsf {2NaOH+ZnO+H_{2}O\rightarrow Na_{2}[Zn(OH)_{4}]}}} — в растворе
с амфотерными гидроксидами
NaOH+Al(OH)3 →1000oC NaAlO2+2h3O{\displaystyle {\mathsf {NaOH+Al(OH)_{3}\ {\xrightarrow {1000^{o}C}}\ NaAlO_{2}+2H_{2}O}}} — при сплавлении
3NaOH+Al(OH)3→Na3[Al(OH)6]{\displaystyle {\mathsf {3NaOH+Al(OH)_{3}\rightarrow Na_{3}[Al(OH)_{6}]}}} — в растворе
с солями в растворе:
2NaOH+CuSO4→Cu(OH)2↓+Na2SO4{\displaystyle {\mathsf {2NaOH+CuSO_{4}\rightarrow Cu(OH)_{2}\!\downarrow +Na_{2}SO_{4}}}}

Гидроксид натрия используется для осаждения гидроксидов металлов. К примеру, так получают гелеобразный гидроксид алюминия, действуя гидроксидом натрия на сульфат алюминия в водном растворе, при этом избегая избытка щёлочи и растворения осадка. Его и используют, в частности, для очистки воды от мелких взвесей.

c неметаллами:

например, с фосфором — с образованием гипофосфита натрия:

4P+3NaOH+3h3O→Ph4↑+3Nah3PO2{\displaystyle {\mathsf {4P+3NaOH+3H_{2}O\rightarrow PH_{3}\!\uparrow +3NaH_{2}PO_{2}}}}

с серой:

3S+6NaOH→2Na2S+Na2SO3+3h3O{\displaystyle {\mathsf {3S+6NaOH\rightarrow 2Na_{2}S+Na_{2}SO_{3}+3H_{2}O}}}
с галогенами
2NaOH+Cl2→NaClO+NaCl+h3O{\displaystyle {\mathsf {2NaOH+Cl_{2}\rightarrow NaClO+NaCl+H_{2}O}}} (дисмутация хлора в разбавленном растворе при комнатной температуре)
6NaOH+3Cl2→NaClO3+5NaCl+3h3O{\displaystyle {\mathsf {6NaOH+3Cl_{2}\rightarrow NaClO_{3}+5NaCl+3H_{2}O}}} (дисмутация хлора при нагревании в концентрированном растворе)
с металлами

Гидроксид натрия вступает в реакцию с алюминием, цинком, титаном. Он не реагирует с железом и медью (металлами, которые имеют низкий электрохимический потенциал). Алюминий легко растворяется в едкой щёлочи с образованием хорошо растворимого комплекса — тетрагидроксоалюмината натрия и водорода:

2Al+2NaOH+6h3O→2Na[Al(OH)4]+3h3↑{\displaystyle {\mathsf {2Al+2NaOH+6H_{2}O\rightarrow 2Na[Al(OH)_{4}]+3H_{2}\!\uparrow }}}

Эта реакция использовалась в первой половине XX века в воздухоплавании: для заполнения водородом аэростатов и дирижаблей в полевых (в том числе боевых) условиях, так как данная реакция не требует источников электроэнергии, а исходные реагенты для неё могут легко транспортироваться.

с эфирами, амидами и алкилгалогенидами (гидролиз):
Гидролиз эфиров

с жирами (омыление) такая реакция необратима, так как получающаяся кислота со щёлочью образует мыло и глицерин. Глицерин впоследствии извлекается из подмыльных щёлоков путём вакуум-выпарки и дополнительной дистилляционной очистки полученных продуктов. Этот способ получения мыла был известен на Ближнем Востоке с VII века.

В результате взаимодействия жиров с гидроксидом натрия получают твёрдые мыла (они используются для производства кускового мыла), а с гидроксидом калия либо твёрдые, либо жидкие мыла в зависимости от состава жира.

с многоатомными спиртами — с образованием алкоголятов:
HOCh3Ch3OH+2NaOH→NaOCh3Ch3ONa+2h3O{\displaystyle {\mathsf {HOCH_{2}CH_{2}OH+2NaOH\rightarrow NaOCH_{2}CH_{2}ONa+2H_{2}O}}}

Качественное определение ионов натрия[править | править код]

Атомы натрия придают пламени жёлтое свечение.
  1. По цвету пламени горелки — атомы натрия придают пламени жёлтую окраску
  2. С использованием специфических реакций на ионы натрия
Реагент Фторид аммония Нитрит цезия-калия-висмута Ацетат магния Ацетат цинка Пикро-

лоновая кислота

Диокси-

винная кислота

Бромбензол-

сульфокислота

Ацетат уранила-цинка
Цвет осадка белый бледно-жёлтый жёлто-зелёный жёлто-зелёный белый белый бледно-жёлтый зеленовато-жёлтый

Гидроксид натрия может получаться в промышленности химическими и электрохимическими методами.

Химические методы получения гидроксида натрия[править | править код]

К химическим методам получения гидроксида натрия относятся пиролитический, известковый и ферритный.

Химические методы получения гидроксида натрия имеют существенные недостатки: расходуется большое количество энергоносителей, получаемый едкий натр сильно загрязнён примесями.

В настоящее время эти методы почти полностью вытеснены электрохимическими методами производства.

Пиролитический метод[править | править код]

Пиролитический метод получения гидроксида натрия является наиболее древним и начинается с получения оксида натрия Na2О путём прокаливания карбоната натрия (например, в муфельной печи). В качестве сырья может быть использован и гидрокарбонат натрия, разлагающийся при нагревании на карбонат натрия, углекислый газ и воду:

2NaHCO3 →250oC Na2CO3+CO2↑+ h3O{\displaystyle {\mathsf {2NaHCO_{3}\ {\xrightarrow {250^{o}C}}\ Na_{2}CO_{3}+CO_{2}\!\uparrow +\ H_{2}O}}}
Na2CO3 →1000oC Na2O+CO2↑{\displaystyle {\mathsf {Na_{2}CO_{3}\ {\xrightarrow {1000^{o}C}}\ Na_{2}O+CO_{2}\!\uparrow }}}

Полученный оксид натрия охлаждают и очень осторожно (реакция происходит с выделением большого количества тепла) добавляют в воду:

Na2O+h3O→2NaOH{\displaystyle {\mathsf {Na_{2}O+H_{2}O\rightarrow 2NaOH}}}
Известковый метод[править | править код]

Известковый метод получения гидроксида натрия заключается во взаимодействии раствора соды с гашеной известью при температуре около 80 °С. Этот процесс называется каустификацией и проходит по реакции:

Na2CO3+Ca(OH)2→2NaOH+CaCO3↓{\displaystyle {\mathsf {Na_{2}CO_{3}+Ca(OH)_{2}\rightarrow 2NaOH+CaCO_{3}\!\downarrow }}}

В результате реакции получается раствор гидроксида натрия и осадок карбоната кальция. Карбонат кальция отделяется от раствора фильтрацией, затем раствор упаривается до получения расплавленного продукта, содержащего около 92 % масс. NaOH. Затем NaOH плавят и разливают в железные барабаны, где он кристаллизуется.

Ферритный метод[править | править код]

Ферритный метод получения гидроксида натрия состоит из двух этапов:

Na2CO3+Fe2O3→850oC2NaFeO2+CO2↑{\displaystyle {\mathsf {Na_{2}CO_{3}+Fe_{2}O_{3}{\xrightarrow {850^{o}C}}2NaFeO_{2}+CO_{2}\!\uparrow }}}
2NaFeO2+2h3O →H+ 2NaOH+Fe2O3⋅h3O↓{\displaystyle {\mathsf {2NaFeO_{2}+2H_{2}O\ {\xrightarrow {H^{+}}}\ 2NaOH+Fe_{2}O_{3}\cdot H_{2}O\!\downarrow }}}

Первая реакция представляет собой процесс спекания кальцинированной соды с окисью железа при температуре 800 – 900°С. При этом образуется спёк — феррит натрия и выделяется двуокись углерода. Далее спёк обрабатывают (выщелачивают) водой по второй реакции; получается раствор гидроксида натрия и осадок Fe2O3⋅{\displaystyle \cdot }nH2О, который после отделения его от раствора возвращается в процесс. Получаемый раствор щёлочи содержит около 400 г/л NaOH. Его упаривают до получения продукта, содержащего около 92 % масс. NaOH, а затем получают твёрдый продукт в виде гранул или хлопьев.

Электрохимические методы получения гидроксида натрия[править | править код]

Способ основан на электролизе растворов галита (минерала, состоящего в основном из поваренной соли NaCl) с одновременным получением водорода и хлора. Этот процесс можно представить суммарной формулой:

2NaCl+2h3O→h3↑+Cl2↑+2NaOH{\displaystyle {\mathsf {2NaCl+2H_{2}O\rightarrow H_{2}\!\uparrow +Cl_{2}\!\uparrow +2NaOH}}}

Едкая щёлочь и хлор вырабатываются тремя электрохимическими методами. Два из них — электролиз с твёрдым катодом (диафрагменный и мембранный методы), третий — электролиз с жидким ртутным катодом (ртутный метод).

В мировой производственной практике используются все три метода получения хлора и каустика с явной тенденцией к увеличению доли мембранного электролиза.

Показатель на 1 тонну NaOH Ртутный метод Диафрагменный метод Мембранный метод
Выход хлора, % 99 96 98,5
Электроэнергия, кВт·ч 3150 3260 2520
Концентрация NaOH, % 50 12 35
Чистота хлора, % 99,2 98 99,3
Чистота водорода, % 99,9 99,9 99,9
Массовая доля O2 в хлоре, % 0,1 1—2 0,3
Массовая доля Cl в NaOH, % 0,003 1—1,2 0,005

В России приблизительно 35 % от всего выпускаемого каустика вырабатывается электролизом с ртутным катодом и 65 % — электролизом с твёрдым катодом.

Диафрагменный метод[править | править код]
Схема старинного диафрагменного электролизера для получения хлора и щёлоков: А — анод, В — изоляторы, С — катод, D — пространство заполненное газами (над анодом — хлор, над катодом — водород), М — диафрагма

Наиболее простым из электрохимических методов в плане организации процесса и конструкционных материалов для электролизера является диафрагменный метод получения гидроксида натрия.

Раствор соли в диафрагменном электролизере непрерывно подаётся в анодное пространство и протекает через, как правило, нанесённую на стальную катодную сетку асбестовую диафрагму, в которую иногда добавляют небольшое количество полимерных волокон.

Во многих конструкциях электролизеров катод полностью погружен под слой анолита (электролита из анодного пространства), а выделяющийся на катодной сетке водород отводится из под катода при помощи газоотводных труб, не проникая через диафрагму в анодное пространство благодаря противотоку.

Противоток — очень важная особенность устройства диафрагменного электролизера. Именно благодаря противоточному потоку, направленному из анодного пространства в катодное через пористую диафрагму, становится возможным раздельное получение щёлоков и хлора. Противоточный поток рассчитывается так, чтобы противодействовать диффузии и миграции OH- ионов в анодное пространство. Если величина противотока недостаточна, тогда в анодном пространстве в больших количествах начинает образовываться гипохлорит-ион (ClO-), который затем может окисляться на аноде до хлорат-иона ClO3-. Образование хлорат-иона серьёзно снижает выход по току хлора и является основным побочным процессом в этом методе получения гидроксида натрия. Также вредит и выделение кислорода, которое, к тому же, ведёт к разрушению анодов и, если они из углеродных материалов, попаданию в хлор примесей фосгена.

Анод:
2Cl−→Cl2+2e−{\displaystyle {\mathsf {2Cl^{-}\!\rightarrow Cl_{2}\!+2e^{-}}}} — основной процесс
2h3O→O2+4H++4e−{\displaystyle {\mathsf {2H_{2}O\rightarrow O_{2}+4H^{+}\!+4e^{-}}}}
6ClO3−+3h3O→2ClO3−+4Cl−+1.5O2↑+ 6H++6e−{\displaystyle {\mathsf {6ClO_{3}^{-}\!+3H_{2}O\rightarrow 2ClO_{3}^{-}+4Cl^{-}\!+1.5O_{2}\!\uparrow \!+\ 6H^{+}\!+6e^{-}}}}
Катод:
2h3O+2e−

ru.wikipedia.org

щёлочь — Викисловарь

Морфологические и синтаксические свойства[править]

щё-лочь

Существительное, неодушевлённое, женский род, 3-е склонение (тип склонения 8e по классификации А. А. Зализняка).

Корень: -щёлочь- [Тихонов, 1996].

Произношение[править]

Семантические свойства[править]

Значение[править]
  1. хим. растворимое в воде сильное основание, создающее в водном растворе большую концентрацию ионов ОН-; гидроксид какого-либо из щелочных и щёлочно-земельных металлов ◆ Каустическая сода является сильной щёлочью.
Синонимы[править]
Антонимы[править]
  1. частичн. кислота
Гиперонимы[править]
  1. основание, гидроксид, вещество
Гипонимы[править]
  1. гидроксид натрия, гидроксид калия, гидроксид бария, гидроксид кальция, гидроксид лития, гидроксид рубидия, гидроксид цезия; едкое кали, едкий натр

Родственные слова[править]

Ближайшее родство
  • существительные: выщелачивание, защелачивание, подщелачивание, щелочение, щёлок, щёлочник, щёлочность
  • прилагательные: перещелочённый, резкощелочной, сильнощелочной, слабощелочной, щелочённый, щелочной, щелочный, щёлочестойкий, щёлочестойкий, щёлочеупорный, щёлочеустойчивый, щёлочноземельный
  • глаголы: выщелачивать, выщелачиваться, выщелочить, выщелочиться, дощелачивать, защелочить, исщелочить, отщелачивать, отщелочить, перещелочить, подщелачивать, подщелачиваться, подщелочить, подщелочиться, щелочить, щелочиться

Этимология[править]

От сущ. щёлок, далее из неустановленной формы. Предполагают заимствование; сближают давно с др.-исл. skola «полоскать, мыть», skylja 1 то же, ср.-н.-нем. schölen «полоскать». Возм., заимств. из н.-нем. *Schöllôge «стиральный щелок». Русск. щёлок — уже в Домостр. Заб. Использованы данные словаря М. Фасмера. См. Список литературы.

Фразеологизмы и устойчивые сочетания[править]

Перевод[править]

ru.wiktionary.org

ЩЕЛОЧИ - это... Что такое ЩЕЛОЧИ?

  • щелочи́ть(ся) — щелочить(ся), чу, чишь, чит(ся) …   Русское словесное ударение

  • ЩЕЛОЧИ — (едкий натр, едкое кали, негашеная известь). По своему действию к щелочам близки сода и силикат натрия. Щелочные сточные воды поступают в водоемы с сульфатцеллюлозных, шерстеобрабатывающих, текстильных предприятий и коммунально бытового хозяйства …   Болезни рыб: Справочник

  • ЩЕЛОЧИ — ЩЕЛОЧИ, растворимые ОСНОВАНИЯ, которые при реакции с кислотой дают соль и воду. У раствора щелочи рН выше 7, и он окрашивает лакмусовую бумагу в синий цвет. Щелочные растворы используются как чистящее средство. К сильным щелочам относятся… …   Научно-технический энциклопедический словарь

  • ЩЕЛОЧИ — хорошо растворимые в воде основания, создающие в водном растворе большую концентрацию ионов ОН . К щелочам относятся гидроксиды металлов подгрупп Iа и IIа периодической системы ЩЕЛОЧНОЗЕМЕЛЬНЫЕ МЕТАЛЛЫ химические элементы Ве, Мg, Ca, Sr, Ba, Ra.… …   Большой Энциклопедический словарь

  • Щелочи — [alkalies] растворимые в воде основания. Водные растворы щелочей характеризуется высокой концентрацией гидроксидных ионов ОН. К щелочам относятся оксиды щелочных, щелочноземельных металлов и аммония. Большинство щелочей твердые белые весьма… …   Энциклопедический словарь по металлургии

  • Щелочи — Щёлочи гидроксиды щелочных и щёлочноземельных металлов. К щелочам относят растворимые в воде основания. При диссоциации щелочи образуют ионы OH и ион металла. К щелочам относятся гидроксиды металлов подгрупп Iа и IIа периодической системы,… …   Википедия

  • Щелочи — ► alkali, base Растворимые в воде основания. Водные растворы щелочи характеризуются высокой концентрацией гидроксильных ионов ОН. Большинство щелочей – твердые белые весьма гигроскопичные вещества. Растворение их в воде сопровождается выделением… …   Нефтегазовая микроэнциклопедия

  • Щелочи — (хим.) В настоящее время говорят почти исключительно о едких щелочах (см.), но прежде под Щ. разумели вообще вещества, растворы коих имеют щелочную реакцию и вкус. К числу Щ. относили тогда и карбонаты щелочных металлов (см. Калий). Сода и поташ …   Энциклопедический словарь Ф.А. Брокгауза и И.А. Ефрона

  • щелочи́ть — чу, чишь; несов., перех. Прибавлять во что л. щелочь или щелок. Щелочить воду …   Малый академический словарь

  • ЩЕЛОЧИ — водные соединения окисей щелочных и щелочно земельных металлов (натрия, кальция и др.). Все Щ. растворимы в воде …   Сельскохозяйственный словарь-справочник

  • big_medicine.academic.ru

    Щёлочи - это... Что такое Щёлочи?

  • Щёлочи — Щёлочи  гидроксиды щелочных, щёлочноземельных металлов и аммония. К щёлочам относят хорошо растворимые в воде основания. При диссоциации щёлочи образуют анионы OH− и катион металла. К щёлочам относятся гидроксиды металлов подгрупп Iа и IIа… …   Википедия

  • не содержащий щёлочи — свободный от щёлочи — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы свободный от щёлочи EN alkali free …   Справочник технического переводчика

  • Щёлочи — ЩЁЛОЧИ, гидроксиды щелочных (едкие щёлочи) и щёлочноземельных металлов. Щелочи сильные основания; едкие щелочи хорошо растворяются в воде, гидроксиды щёлочноземельных металлов плохо. Все щелочи чрезвычайно агрессивны, их растворы разрушают стекло …   Иллюстрированный энциклопедический словарь

  • Едкие щёлочи —         хорошо растворимые в воде гидроокиси щелочных металлов, например едкий натр NaOH, едкое кали КОН. Оказывают разъедающее действие на слизистые оболочки и кожу. Широко применяются во многих отраслях промышленности. См. Щёлочи …   Большая советская энциклопедия

  • щёлочи — хорошо растворимые в воде основания, создающие в водном растворе большую концентрацию ионов ОН . К щёлочам относятся гидроксиды металлов подгрупп Ia и IIа периодической системы [например, NaOH, Ba(OH)2]. Широко применяются в промышленности. * * * …   Энциклопедический словарь

  • Щёлочи — (хим.) В настоящее время говорят почти исключительно обедких щёлочах, но прежде под Щ. разумели вообще вещества, растворы коихимеют щелочную реакцию и вкус. К числу Щ. относили тогда и карбонатыщелочных металлов. Сода и поташ, например, имеют… …   Энциклопедия Брокгауза и Ефрона

  • ЩЁЛОЧИ — гидроксиды щелочных металлов (Li, Na, K, Rb, Cs, Fr) и щёлочноземельных металлов (Ca, Sr, Ba, Ra) (I и II группы периодической системы Д. И. Менделеева). Щ. твердые белые гигроскопические вещества. При их растворении в воде выделяется большое… …   Российская энциклопедия по охране труда

  • заводнение раствором щёлочи — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN alkaline waterflooding …   Справочник технического переводчика

  • оборудование для закачивания щёлочи (в пласт) — — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность EN caustic flooding equipment …   Справочник технического переводчика

  • раствор щёлочи — отработанная щёлочь щелочные отбросы — [http://slovarionline.ru/anglo russkiy slovar neftegazovoy promyishlennosti/] Тематики нефтегазовая промышленность Синонимы отработанная щёлочьщелочные отбросы EN alkali liquor …   Справочник технического переводчика

  • устройство для распределения щёлочи в фильтре регенерации анионита — — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN anion regeneration tank caustic distributor …   Справочник технического переводчика

  • dic.academic.ru

    Кислоты, щелочи и основания с точки зрения химии

    Что же представляют собой кислоты, щелочи и основания с химической точки зрения? Читай внимательно и запоминай. Смотри не запутайся!

    Что такое кислота?

    Кислоты представляют собой молекулы, которые при растворении в воде высвобождают ион водорода. Ионы — это положительно и отрицательно заряженные частички, которые придают кислотам их свойства.

    Молекула соляной кислоты

    Давай рассмотрим этот процесс на примере соляной кислоты — HCI. Если соляную кислоту соединить с водой, она распадется на ион водорода (Н+) и ион хлора (CI ). Так как в составе молекулы воды также есть водород, то при распаде соляной кислоты общее количество ионов водорода в растворе увеличится.

    А что происходит со щелочами при попадании в воду? В воде щелочи высвобождают гидроксид-ионы. Например, гидроксид натрия (NaOH) — щелочь. При соединении с водой он распадается на ионы натрия (Na+) и гидроксид-ионы (ОН ). Когда гидроксид-ионы встречаются с ионами водорода воды, общее количество ионов водорода в растворе сокращается.

    Что такое основание?

    Основание — это соединение, химически противоположное кислоте. В состав основания входят ионы металлов и связанные с ними гидроксид-ионы. Эти вещества способны присоединять ионы водорода (Н+) из кислоты. Когда основание смешивается с кислотой, оно полностью нейтрализует его свойства, а в результате реакции образуется соль.

    Например, с точки зрения химии хорошо знакомая тебе зубная паста — это основание, которое нейтрализует кислоту, оставшуюся во рту после приема пищи.

    ЗАПОМНИ! В связи с тем, что ионы существуют только в растворах, свои свойства кислоты проявляют также лишь в растворах.

    Что такое щелочь?

    Щелочи — это соединения, в состав которых входят ион металла и гидроксид-ион (ОН-). К щелочам химики относят гидроксиды щелочных и щелочноземельных металлов. Щелочи представляют собой вещества белого цвета, которые хорошо растворяются в воде. Более того, растворение всегда сопровождается очень активным выделением тепла. Щелочи вступают в реакцию с кислотами, образуя соль и воду.

    Такая щелочь, как гидроксид натрия, используется для производства твердого мыла

    Щелочи очень активны! Они способны поглощать из воздуха не только водяные пары, но и молекулы углекислого газа, сероводорода и т.д. Поэтому хранят щелочи в очень герметичной таре. Концентрированные щелочи разрушают стекло, а иногда даже фарфор. Если сравнивать щелочи с кислотами, то щелочи могут вызвать более сильные ожоги, так как они очень быстро проникают в ткань, и их практически невозможно смыть водой.

    В кислотном растворе лакмусовая бумажка становится красной, в щелочном — синей

    Шкала pH

    Почему одни жидкости — кислоты, а другие — щелочи? Оказывается, все дело в типе ионов. Если в жидкости больше концентрация ионов водорода, такая жидкость является кислотой, а если гидроксид-ионов, то щелочью.

    Шкала pH используется для измерения кислотности или щелочности раствора от 0 до 14.

    Если pH раствора находится в пределах 0—7, то такой раствор считается кислотным, при этом раствор с pH = 0 — самый кислый. Растворы с pH в пределах 7—14 являются щелочами, при этом раствор с pH = 14 считается самым едким и опасным.

    Если pH раствора равен 7, то такой раствор является нейтральным, так как концентрация ионов водорода равна концентрации гидроксид-ионов. Пример нейтрального раствора — чистая вода.

    Что такое показатель pH?

    В переводе с латинского pH (potentia hydrogeny) озна­чает «сила водорода», т.е. активность ионов водоро­да в водном растворе.

    Как химики определяют наличие воды в веществе?

    Они берут бесцветный сульфат меди (CuSO4) и добавляют его в вещество. Если воды нет, то по­рошок остается бесцветным, однако даже при минимальном количестве воды он становится синим.

    Концентрированные кислоты и щелочи

    Ядовитые жидкости находятся не только в школьных лабораториях, они и вокруг нас. Это различные средства бытовой химии (стиральные порошки и пятновыводители), цветочные удобрения и ядохимикаты, лаки и краски, клеи и растворители, бензин и дизельное топливо, аккумуляторные, тормозные и прочие технические жидкости, а на кухне — уксус и уксусная кислота.

    Совершенно очевидно, что все вышеупомянутые вещества должны использоваться строго по назначению и в соответствии с определенными правилами, указанными на этикетке каждого средства. К сожалению, несоблюдение мер безопасности при работе с ядовитыми средствами может привести к серьезным проблемам со здоровьем: отравлению, различным повреждениям кожи и слизистых оболочек.

    ВНИМАНИЕ! Обязательно запомни следующую информацию: кислоты с очень низким показателем pH (менее 2) и щелочи, pH которых выше 13, являются чрезвычайно опасными!

    Кислоты и щелочи в природе

    Ты уже успел убедиться в том, что вокруг нас — огромное количество кислот и щелочей. Молочные продукты, овощи и фрукты содержат лимонную, яблочную, щавелевую, уксусную, молочную, аскорбиновую и другие кислоты. Трудно поверить, но в косточках вишен и миндаля содержится (хоть и в минимальных количествах) такой сильный яд, как синильная кислота! Известно, что многие насекомые предпочитают защищаться разными кислотами. Никогда не задумывался, почему укусы обыкновенного крошечного муравья бывают такими болезненными? А все потому, что он вспрыскивает в ранку капельки муравьиной кислоты. Эту же кислоту выделяют и кое-какие виды гусениц, а тропические пауки и некоторые жуки защищаются от врагов при помощи уксусной и серной кислот.

    ОСТОРОЖНО! Как правило, концентрированные кислоты и щелочи есть во всех школьных каби нетаххимии, и пользоваться ими можно только под руководством учителя.

    Применение щелочей

    Щелочи широко применяются в различных отраслях промышленности, медицине и быту. Например, каустическая сода используется для растворения жиров и входит в состав многих моющих средств, применяется при производстве целлюлозы, масел, дизельного топлива. Также щелочи используют для изготовления мыла, искусственных волокон, различных красителей и т.д.

    Кислоты в почве

    Оказывается, кислоты есть и в почвах, а способность почвы проявлять свойства кислот называется кислотностью. Этот показатель зависит от наличия в земле ионов водорода. От кислотности почвы зависят рост и развитие растений. Большинство из них предпочитает нейтральные или близкие к ним почвы. Однако есть ряд растений, которые отлично себя чувствуют именно на кислотных почвах, например рододендроны, гортензии, азалии. Некоторые сорта гортензии могут менять цвет бутонов в зависимости от условий выращивания и кислотности почвы. Ученые выяснили, что на цвет бутонов влияет наличие алюминия!

    Большинство садовых почв характеризуется достаточным содержанием этого элемента. В кислой среде соединения алюминия превращаются в растворимые и становятся доступными для растений, поэтому и вырастают бутоны голубого цвета. В нейтральной или щелочной среде алюминий находится в виде нерастворимых соединений, поэтому он и не поступает в растения. В результате на таких почвах растут бутоны розового цвета.

    Кислоты и щелочи в нашем организме

    Для переваривания пищи организм использует желудочный сок, в состав которого входят соляная кислота и различные ферменты. Иногда, особенно после переедания, мы можем почувствовать боль в желудке. Чаще всего для снятия неприятных ощущений достаточно принять антацидный, или противокислотный, препарат, основное действие которого направлено на нейтрализацию соляной кислоты в желудке. Как правило, все антациды — щелочи, и именно они нейтрализуют повышенную активность кислот.

    Действие антацидных препаратов

    Поделиться ссылкой

    sitekid.ru


    Смотрите также