Цитокины что это такое


Цитокины | Кинезиолог

Характеристики отдельных цитокинов

Рецепторы к цитокинам

Определение понятия

Краткое определение: Цитокины - это полипептидные межклеточные медиаторы, регулирующие активность клеток.

Цитокины — это небольшие пептидные сигнальные (управляющие) молекулы, участвующие в биорегуляции, хеморегуляции и  иммунорегуляции, которые секретируются неэндокринными клетками (в основном, иммунными) и оказывают местное воздействие на соседние клетки-мишени.

Цитокины регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз, а также обеспечивают согласованность действия иммунной, эндокринной и нервной систем на клеточном уровне в нормальных условиях и в ответ на патологические воздействия.

Важная особенность цитокинов, отличающая их от других биолигандов, заключается в том, что они не производятся "в запас", не депонируются, не циркулируют долго по кровеносной системе, а производятся "по требованию", живут короткое время и оказывают местное воздействие на ближайшие клетки-мишени.

Цитокины вместе с продуцирующими их клетками образуют «микроэндокринную систему», которая обеспечивает взаимодействие клеток иммунной, кроветворной, нервной и эндокринной систем. Образно можно сказать, что с помощью цитокинов клетки иммунной системы общаются друг с другом и с остальными клетками организма, передавая от цитокин-продуцирующих клеток команды на изменение состояния клеток-мишеней. И с этой точки зрения цитокины можно назвать для иммунносй системы «цитотрансмиттерами», «цитомедиаторами» или «цитомодуляторами» по аналогии с нейротрансмиттерами, нейромедиаторами и нейромодуляторами нервной системы.

Термин "цитокины" был предложен S. Cohen в 1974 году.

Цитокины вместе с факторами роста относятся к гистогормонам (тканевым гормонам).

Функции цитокинов

1. Провоспалительные, т.е. способствующие воспалительному процессу.

2. Противовоспалительные, т.е. тормозящие воспалительный процесс.

3. Ростовые.

4. Дифференцировочные.

5. Регуляторные.

6. Активирующие.

Виды цитокинов

1. Интерлейкины (ИЛ) и  фактор некроза опухолей (ФНО)
2. Интерфероны.
3. Малые цитокины.
4. Колониестимулирующие факторы  (КСФ).

Функциональная классификация цитокинов

1. Провоспалительные, обеспечивающие мобилизацию воспалительного ответа (интерлейкины 1,2,6,8, ФНОα, интерферон γ).
2. Противовоспалительные, ограничивающие развитие воспаления (интерлейкины 4,10, TGFβ).
3. Регуляторы клеточного и гуморального иммунитета (естественного или специфического), обладающие собственными эффекторными функциями (противовирусными, цитотоксическими).

Механизм действия цитокинов

Цитокины выделяются активированной цитокин-продуцирующей клеткой и взаимодействуют с рецепторами клеток-мишеней, находящихся рядом с ней. Таким образом, от одной клетки к другой в виде пептидного управляющего вещества (цитокина) передается сигнал, который запускает в ней дальнейшие биохимические реакции. Нетрудно заметить, что цитокины по механизму своего действия очень напоминают нейромодуляторы, но только они секретируются не нервными клетками, а иммунными и некоторыми другими.

Цитокины активны в очень малых концентрациях, их образование и секреция происходит кратковременно и строго регулируются.
Цитокинов было известно в 1995 году более 30, а в 2010 - уже более 200.

Цитокины не имеют строгой специализации: один и тот же процесс может стимулироваться в клетке-мишени разными цитокинами. Во многих случаях в действиях цитокинов наблюдается синергизм, т.е. взаимоусиление. Цитокины не имеют антигенной специфичности. Поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с помощью определения уровня цитокинов невозможна. Но в медицине определение их концентрации в крови даёт информацию о функциональной активности различных типов иммунокомпетентных клеток; о тяжести воспалительного процесса, его переходе на системный уровень и о прогнозе заболевания.
Цитокины действуют на клетки, соединяясь с их поверхностными рецепторами. Связывание цитокина с рецептором приводит через ряд промежуточных этапов к активации соответствующих генов. Чувствительность клеток-мишеней к действию цитокинов изменяется в зависимости от количества цитокиновых рецепторов на их поверхности. Время синтеза цитокина, как правило, бывает коротким: лимитирующим фактором служит нестабильность молекул мРНК. Отдельные цитокины (например, ростовые факторы) продуцируются спонтанно, но большинство цитокинов секретируются индуцированно. 

Синтез цитокинов индуцируется, чаще всего, микробными компонентами и продуктами (например, бактериальным эндотоксином). Кроме того, один цитокин может служить индуктором для синтеза других цитокинов. Так, например, интерлейкин-1 индуцирует продукцию интерлейкинов-6, -8, -12, чем обеспечивается каскадный характер цитокинового контроля. Для биологических эффектов цитокинов характерна полифункциональность, или плейотропность. Это означает, что один и тот же цитокин проявляет разнонаправленную биологическую активность, и в то же время одну и ту же функцию могут выполнять разные цитокины. Этим обеспечивается запас прочности и надёжность системы цитокиновой хеморегуляции. При совместном влиянии на клетки цитокины могут выступать как в качестве синергистов, так и в качестве антагонистов.

Цитокины представляют собой регуляторные пептиды, продуцируемые клетками организма. Такое широкое определение неизбежно в силу гетерогенности цитокинов, но требует дополнительных пояснений. Во-первых, к цитокинам относятся простые полипептиды, более сложные молекулы с внутренними дисульфидными связями и белки, состоящие из двух и более одинаковых либо разных субъединиц, с молекулярной массой от 5 до 50 кДа. Во-вторых, цитокины являются эндогенными медиаторами, которые могут синтезироваться практически всеми ядросодержащими клетками организма, причем гены некоторых цитокинов экспрессируются во всех без исключения клетках организма.
К системе цитокинов в настоящее время относят около 200 индивидуальных полипептидных веществ [6]. Все они имеют ряд общих биохимических и функциональных характеристик, среди которых важнейшими считаются следующие: плейотропность и взаимозаменяемость биологического действия, отсутствие антигенной специфичности, проведение сигнала путем взаимодействия со специфическими клеточными рецепторами, формирование цитокиновой сети. В связи с этим цитокины могут быть выделены в новую самостоятельную систему регуляции функций организма, существующую наряду с нервной и гормональной регуляцией [1].
По-видимому, формирование системы цитокиновой регуляции эволюционно проходило вместе с развитием многоклеточных организмов и было обусловлено необходимостью образования посредников межклеточного взаимодействия, к которым могут быть причислены гормоны, нейропептиды и молекулы адгезии. Цитокины в этом плане являются наиболее универсальной системой регуляции, так как способны проявлять биологическую активность как дистантно после секреции клеткой-продуцентом (местно и системно), так и при межклеточном контакте, будучи биологически активными в виде мембранной формы. Этим система цитокинов отличается от молекул адгезии, выполняющих более узкие функции только при непосредственном контакте клеток. В то же время система цитокинов отличается от гормонов, которые в основном синтезируются специализированными органами и оказывают действие после попадания в систему циркуляции.
Цитокины оказывают плейотропные биологические эффекты на различные типы клеток, главным образом, участвуя в формировании и регуляции защитных реакций организма. Защита на местном уровне развивается путем формирования типичной воспалительной реакции после взаимодействия патогенов с паттерн-распознающими рецепторами (мембранными Toll-рецепторами) с последующим синтезом так называемых провоспалительных цитокинов. Синтезируясь в очаге воспаления, цитокины воздействуют практически на все клетки, участвующие в развитии воспаления, включая гранулоциты, макрофаги, фибробласты, клетки эндотелия и эпителиев, а затем на Т- и В-лимфоциты.

В рамках иммунной системы цитокины осуществляют взаимосвязь между неспецифическими защитными реакциями и специфическим иммунитетом, действуя в обоих направлениях. Примером цитокиновой регуляции специфического иммунитета служит дифференцировка и поддержание баланса между Т-лимфоцитами хелперами 1-го и 2-го типов. В случае несостоятельности местных защитных реакций цитокины попадают в циркуляцию, и их действие проявляется на системном уровне, что приводит к развитию острофазового ответа на уровне организма. При этом цитокины оказывают влияние практически на все органы и системы, участвующие в регуляции гомеостаза. Действие цитокинов на ЦНС приводит к изменению всего комплекса поведенческих реакций, меняется синтез большинства гормонов, острофазовых белков в печени, экспрессия генов ростовых и дифференцировочных факторов, изменяется ионный состав плазмы. Однако ни одно из происходящих изменений не носит случайного характера: все они либо нужны для непосредственной активации защитных реакций, либо выгодны в плане переключения энергетических потоков для одной лишь задачи - борьбы с внедрившимся патогеном. На уровне организма цитокины осуществляют связь между иммунной, нервной, эндокринной, кроветворной и другими системами и служат для их вовлечения в организацию и регуляцию единой защитной реакции. Цитокины как раз и служат той организующей системой, которая формирует и регулирует весь комплекс патофизиологических сдвигов при внедрении патогенов.
В последние годы выяснилось, что регуляторная роль цитокинов в организме не ограничивается только иммунным ответом и может быть разделена на четыре основных составляющих:
Регуляция эмбриогенеза, закладки и развития ряда органов, в том числе органов иммунной системы.
Регуляция отдельных нормальных физиологических функций, например нормального кроветворения.
Регуляция защитных реакций организма на местном и системном уровне.
Регуляция процессов регенерации для восстановления поврежденных тканей.
К цитокинам относят интерфероны, колониестимулирующие факторы (КСФ), хемокины, трансформирующие ростовые факторы; фактор некроза опухолей; интерлейкины со сложившимися исторически порядковыми номерами и некоторые другие. Интерлейкины, имеющие порядковые номера, начиная с 1, не относятся к одной подгруппе цитокинов, связанных общностью функций. Они в свою очередь могут быть разделены на провоспалительные цитокины, ростовые и дифференцировочные факторы лимфоцитов, отдельные регуляторные цитокины. Название "интерлейкин" присваивается вновь открытому медиатору в том случае, если соблюдены следующие критерии, выработанные номенклатурным комитетом Международного союза иммунологических обществ: молекулярное клонирование и экспрессия гена изучаемого фактора, наличие уникальной нуклеотидной и соответствующей ей аминокислотной последовательности, получение нейтрализующих моноклональных антител [7]. Кроме того, новая молекула должна продуцироваться клетками иммунной системы (лимфоцитами, моноцитами или другими типами лейкоцитов), иметь важную биологическую функцию в регуляции иммунного ответа, а также дополнительные функции, из-за чего ей не может быть дано функциональное название. Наконец, перечисленные свойства нового интерлейкина должны быть опубликованы в рецензируемом научном издании.
Классификация цитокинов может проводиться по их биохимическим и биологическим свойствам, а также по типам рецепторов, посредством которых цитокины осуществляют свои биологические функции. Классификация цитокинов по строению (табл. 1) учитывает не только аминокислотную последовательность, но прежде всего третичную структуру белка, более точно отражающую эволюционное происхождение молекул [5].

Рецепторы цитокинов

Источники:

meduniver.com/Medical/Physiology/353.html
ru.wikipedia.org/wiki/Цитокины
www.cytokines.ru/2004/2/Art2.php
kineziolog.su/gistogormony
www.medvuz.com/noz/268.php
betaleukin.ru/obschaya-harakteristika-i-klassifikatsiya-tsitokinov/
http://www.slideshare.net/crasgmu/184-8885727 (Презентация)

kineziolog.su

Цитокинины — Википедия

Цитокинины (греч. κύτταρο ячейки + греч. κίνηση движение) — класс гормонов растений 6-аминопуринового ряда, стимулирующих деление клеток (цитокинез). С этой способностью цитокининов связаны их основные функции в развитии растений — например, поддержание апикальной меристемы побега. Кроме того, к физиологическим функциям цитокининов относятся стимуляция транспорта питательных веществ в клетку, ингибирование роста боковых корней, замедление старения листьев[1]. Молекулярная масса (~ 5-20 кДа).

Цитокинины вовлечены в рост растительных клеток и другие физиологические процессы. Эффект цитокининов впервые был открыт на табаке в 1955 году Фольком Скугом.[2]

Кроме природных цитокининов — производных 6-аминопурина, представленных изопентинилом, зеатином и 6-бензиламинопурином, известны и синтетические приозводные фенилмочевины, стимулирующие цитокинеза у растений — N,N'-дифенилмочевина и тидиазурон (N-фенил-N'-(1,2,3-тиадиазол-5-ил)мочевина). Цитокинины синтезируется в основном в корнях, а также в стеблях и листьях. Камбий и другие активно делящиеся ткани растений также являются местом синтеза цитокининов.[3] Не показано, что цитокинины типа фенилмочевины естественно встречаются в тканях растений.[4] Цитокинины участвуют в местной передаче сигнала, а также в передаче сигнала на расстоянии, причем последний механизм также используется для транспорта пуринов и нуклеозидов.[5]

Открытие цитокининов связано с рядом экспериментов (Ф. Скуг), направленных на получение растительной культуры клеток. Сердцевинную паренхиму стеблей табака помещали на искусственные среды, содержащие минеральные вещества, сахар, витамины, аминокислоты, ИУК.
В среды начали добавлять ДНК из молок сельди. Сначала это не привело к успеху, но, благодаря ошибке при проведении автоклавирования (среда с ДНК перегрелась), паренхима начала активно делиться. Оказалось, что в перегретом препарате ДНК содержался фурфуриладенин (кинетин), который на фоне ауксина, вызывает деление клеток[6]. Первый натуральный цитокинин — зеатин — был выделен в 1974 году[1].

Цитокинины участвуют во многих физиологических процессах растений, регулируют деления клеток, морфогенез побега и корня, созревание хлоропластов, линейный рост клетки, образование добавочных почек и старение.[7] Соотношение ауксинов к цитокининам является ключевым фактором деления клеток и дифференцировки тканей растения.

В то время, как эффект цитокининов на сосудистые растения является плейотропным, цитокинины вызывают изменения роста протонемы у мхов. Образование почек можно считать вариантом дифференцировки клеток и этот процесс является очень специфическим эффектом цитокининов.[8]

Предшественниками биосинтеза цитокининов в растениях являются свободные АТФ и АДФ, а также тРНК. Первая стадия биосинтеза цитокининов — синтез изопентил-нуклеотидов из АТФ или АДФ и диметилаллилпирофосфата — катализируется ферментом изопентенилтрасферазой (IPT). Кроме IPT, у растений выявлены ферменты тРНК-IPT, использующие в качестве субстрата тРНК — они используются для синтеза цис-зеатина. В дальнейшем изопентенил-нуклеотиды могут превращаться в зеатин-нуклеотиды с помощью фитохром P450-монооксигеназ. Наконец, последней стадией является получение активных цитокининов из цитокининовых нуклеотидов путём дефосфорилирования и дерибозилирования — это реакция катализируется ферментом 5’монофосфат-фосфорибогидролазой, который кодируется геном LOG.[1]

Фермент аденозинфосфатизопентилтрансфераза катализирует первую реакцию в биосинтезе изопреновых цитокининов, фермент использует АТР, ADP или AMP как субстрат и диметилаллилдифосфат или гидроксиметилбутенилдифосфат как донор пренильной группы.[9] Данная реакция является лимитирующей в биосинтезе цитокининов, субстраты—доноры пренильных групп образуются в пентилэритрол-фосфатном биохимическом пути.[9]

У растений и бактерий цитокинины также могут образовываться из продуктов распада тРНК.[9][10] Транспортные РНК, с антикодоном, начинающимся с уридина и имеющие пренилированные аденозины рядом с антикодоном, освобождают при деградации аденозины как цитокинины.[9] Пренилирование таких аденинов осуществляется тРНК-изопентилтрансферазой[10]

Показано также, что ауксины регулируют биосинтез цитокининов.[11]

По последним данным, разные этапы биосинтеза цитокининов осуществляются в разных тканях растения. Основным местом синтеза цитокининовых нуклеотидов является кончик корня, небольшое их количество синтезируется также в апексе побега, цветках и плодах. По ксилеме цитокининовые нуклеотиды доставляются в апекс побега, который является основным местом синтеза активных свободных цитокининов[1].

Катаболизм и инактивация цитокининов[править | править код]

Основные ферменты катаболизма цитокининов — цитокинин-оксидазы, которые локализованы в вакуолях и эндоплазматическом ретикуллуме (ЭР) и осуществляет расщепление цитокининов с образованием аденина. Субстратами цитокинин-оксидаз являются свободные цитокинины и их рибозиды. Помимо расщепления цитокинин-оксидазами возможна обратимая или необратимая инактивация цитокининов путём образования конъюгатов[1].

Основной транспортной формой цитокининов является зеатин-рибозид (ксилемный транспорт). Кроме того, существует транспорт цитокининов по флоэме, благодаря которому свободные цитокинины и их конъюгаты могут перемещаться по растению в обоих направлениях.

Транспорт цитокининов между клетками растения осуществляют две группы белков:

  • пуринпермеазы (PUP), которые транспортируют в клетку свободные цитокинины, а также аденин.
  • равновесные транспортеры нуклеозидов (ENT), которые осуществляют транспорт в клетку цитокинин-рибозидов[1].

Функции цитокининов в развитии растений[править | править код]

Функции цитокининов в развитии растений очень многообразны:

  • контроль пролиферации клеток;
  • координация роста и развития растений в зависимости от доступности минерального и органического питания;
  • поддержание апикальной меристемы побега и ингибирование развития корневой системы;
  • предотвращение старения листьев.

В контроле большинства онтогенетических процессов цитокинины являются антагонистами ауксинов и гиббереллинов[1].

  1. 1 2 3 4 5 6 7 Лутова Л.А., Ежова Т.А., Додуева И.Е., Осипова М.А. Генетика развития растений. / С.Г. Инге-Вечтомов. — Санкт-Петербург, 2011. — С. 432. — ISBN 978-5-94869-104-6.
  2. ↑ J.J. Kieber (2002): Tribute to Folke Skoog: Recent advances in our understanding of cytokinin biology. Journal of Plant Growth Regulation 21, 1-2. [1] (недоступная ссылка)
  3. ↑ Chen, C. et al. 1985. Localization of Cytokinin Biosynthetic Sites in Pea Plants and Carrot Roots. Plant Physiology 78:510-513.
  4. ↑ Mok, DWS and Mok, MC. 2001. Cytokinin metabolism and action. Annual Review of Plant Physiology and Plant Molecular Biology 52: 89-118
  5. ↑ Sakakibara, H. 2006. Cytokinins: Activity, Biosynthesis, and Translocation. Annual Review of Plant Biology 57: 431—449
  6. ↑ Физиология растений: учебник для студентов ВУЗов / под ред. И. П. Ермакова.
  7. ↑ Kieber JJ (2002 Cytokinins. In CR Somerville, EM Meyerowitz, eds, [www.aspb.org/publications/arabidopsis/ The Arabidopsis Book]. American Society of Plant Biologists, Rockville, MD, doi: 10.1199/tab.0009
  8. ↑ Eva L. Decker, Wolfgang Frank, Eric Sarnighausen, Ralf Reski (2006): Moss systems biology en route: Phytohormones in Physcomitrella development. Plant Biology 8, 397—406 [2] Архивная копия от 24 января 2008 на Wayback Machine
  9. 1 2 3 4 Ildoo Hwang, Hitoshi Sakakibara (2006) Cytokinin biosynthesis and perception Physiologia Plantarum 126 (4), 528—538
  10. 1 2 Kaori Miyawaki, Miho Matsumoto-Kitano, Tatsuo Kakimoto (2004) Expression of cytokinin biosynthetic isopentenyltransferase genes in Arabidopsis: tissue specificity and regulation by auxin, cytokinin, and nitrate The Plant Journal 37 (1), 128—138
  11. ↑ Nordström, A. 2004. Auxin regulation of cytokinin biosynthesis in Arabidopsis thaliana: A factor of potential importance for auxin-cytokinin-regulated development. PNAS 101:8039-8044

ru.wikipedia.org

Провоспалительные и противовоспалительные цитокины: классификация и свойства

Вы когда-нибудь слышали о цитокинах? Термин «цитокин» происходит от комбинации двух греческих слов: «цито» означает клетку и «кинос» означает движение. Противовоспалительные цитокины играют важную роль как в здоровье, так и в болезнях, особенно когда речь идет о воспалительных состояниях, аутоиммунных заболеваниях, хронических и острых инфекциях, травмах, проблемах с зачатием и беременностью, и даже раком (1).

Согласно одной научной статье, которая подчеркивает роль цитокинов в здоровье женщин, включая преждевременные роды и эндометриоз, «прогресс в понимании биологии цитокинов привел к пониманию важности цитокинов во всех областях медицины» (2).

Так что же такое цитокины? Они представляют собой категорию небольших белков, которые обеспечивают связь между клетками. Существует несколько семейств цитокинов, которые вырабатываются по-разному, ведут себя по-разному и имеют разную активность в организме.

С другой стороны, противовоспалительные цитокины могут помочь нам бороться с инфекциями и оказывать положительное влияние на нашу иммунную систему и воспаление. Однако, когда некоторые цитокины не ведут себя идеально или перепроизводятся, это может привести к заболеванию.

Может быть трудно объяснить цитокины без чрезмерного научного языка, но лучше понимая эти мощные молекулы, мы можем улучшить или даже предотвратить некоторые очень распространенные, но серьезные проблемы со здоровьем, включая артрит, рак и многое другое.

Что такое цитокины

Простое определение цитокинов: группа белков, созданных иммунной системой, которые действуют как химические мессенджеры. Цитокины представляют собой белки, пептиды или гликопротеины, секретируемые лимфоцитами и моноцитами, которые регулируют иммунные ответы, гемопоэз и развитие лимфоцитов (3).

Эти мелкие белки действуют как посредники между клетками, и занимаются передачей жизненно важной информации, которая влияет на многие вещи в организме, начиная от эмбрионального развития до модуляции структуры кости и поддержания гомеостаза (4). Цитокины, вероятно, наиболее известны своей ключевой ролью в качестве медиаторов и регуляторов воспалительных реакций. Они на самом деле способны стимулировать движение клеток к участкам инфекции, травм и воспалений.

Цитокины секретируются другими типами клеток в высоких концентрациях и могут влиять либо на клетку происхождения (аутокринное действие), на ближайшие к ним клетки (паракринное действие) или на отдаленные клетки (эндокринное или системное действие) (5). Как правило, цитокины могут действовать синергически (работая вместе) или антагонистически (действуя в оппозиции). Существует несколько различных групп или семейств цитокинов, которые структурно сходны, но имеют разнообразный спектр функций.

Классификация цитокинов 

Выделяют несколько подкатегорий цитокинов, которые включают как провоспалительные, так и противовоспалительные цитокины.

Провоспалительные цитокины в основном продуцируются активированными макрофагами и участвуют в активизации воспалительных реакций.

Научные данные связывают эти провоспалительные белки с различными заболеваниями, а также с процессом патологической боли. Между тем, противовоспалительные цитокины являются молекулами, которые помогают регулировать иммунную систему и контролировать провоспалительный ответ цитокинов (6).

Согласно классификации цитокинов, существуют следующие основные семейства цитокинов и их ключевые характеристики или действия: (7, 8)

  • Хемокины: прямая миграция клеток, адгезия и активация
  • Интерфероны: противовирусные белки
  • Интерлейкины: разнообразие действий, зависящих от типа клеток интерлейкина
  • Монокины: мощные молекулы, вырабатываемые моноцитами и макрофагами, которые помогают направлять и регулировать иммунные реакции
  • Лимфокины. Белковые медиаторы, как правило, вырабатываются лимфоцитами (лейкоцитами) для направления реакции иммунной системы путем передачи сигналов между ее клетками.
  • Фактор некроза опухоли: регулирует воспалительные и иммунные реакции

Есть также эритропоэтин, также называемый гемопоэтин, который является цитокиновым гормоном, который регулирует выработку эритроцитов (эритроцитов).

Свойства цитокинов

1. Регулирование иммунной системы

Цитокины играют очень важную роль в нашем иммунном ответе. Двумя основными продуцентами цитокинов являются Т-хелперные клетки и макрофаги. Что это такое? Т-хелперные клетки помогают другим клеткам в иммунном ответе, распознавая чужеродные антигены и секретируя цитокины, которые затем активируют Т и В-клетки. Макрофаги окружают и убивают микроорганизмы, поглощают инородный материал, удаляют мертвые клетки и усиливают иммунные реакции.

Воздействуя на клетки иммунной системы и взаимодействуя с ними, цитокины способны регулировать реакцию организма на болезни и инфекции. Цитокины влияют как на наши врожденные, так и на адаптивные иммунные реакции (9). Оптимальное производство и поведение наших цитокинов является ключом к здоровью нашей иммунной системы.

В одной научной статье, опубликованной в 2014 году, рассматривалось влияние цитокинов, таких как интерфероны (INF) и интерлейкины (IL), на микобактериальные инфекции, в частности, туберкулез. Исследователи приходят к выводу: «В целом семейство цитокинов IFN, по-видимому, является критическим для исхода микобактериальной инфекции» и играет важную роль в сдерживании роста бактерий (10).

3. Уменьшение боли при артрите

Поскольку цитокины регулируют различные воспалительные реакции, неудивительно, что исследования показывают, какую важную роль играют эти белки в артрите, воспалительном заболевании суставов. Как упоминалось ранее, перепроизводство или неправильное производство определенных цитокинов организмом может привести к заболеванию.

Согласно опубликованной в 2014 году научной статье под названием «Роль воспалительных и противовоспалительных цитокинов в патогенезе остеоартрита», интерлейкин-1-бета и фактор некроза опухолей-альфа, как полагают, являются основными воспалительными цитокинами, вовлеченными в остеоартрит (ОА). В то время как интерлейкин-15 связан с патогенезом ревматоидного артрита (РА) (11).

Хотя очевидно, что провоспалительные цитокины находятся на повышенных уровнях у пациентов с артритом, их противовоспалительные варианты также были обнаружены в синовиальной оболочке и в синовиальной жидкости пациентов с РА. На сегодняшний день научные исследования на животных моделях продемонстрировали способность противовоспалительных цитокинов уменьшать боль, возникающую в результате артрита. Однако они не препятствуют повреждению суставов. Клинические испытания на людях продолжаются, и мы надеемся, что в скором времени появятся некоторые полезные результаты для больных артритом (12).

4. Уменьшение воспаления

Противовоспалительные цитокины известны своей способностью уменьшать воспаление в организме. А мы знаем, что воспаление является причиной большинства заболеваний (13). Согласно научной статье под названием «Цитокины, воспаление и боль», которая была опубликована в журнале  International Anesthesiology Clinics, из всех противовоспалительных цитокинов интерлейкин 10 (IL-10) обладает одними из самых сильных воспалительных свойств и способен подавлять экспрессию провоспалительных цитокинов, таких как интерлейкин 6 (IL-6), интерлейкин 1 (IL-1) и фактор некроза опухоли альфа (TNF-α).

IL-10 также способен подавлять провоспалительные рецепторы цитокинов, поэтому он способен снижать продукцию, а также функцию молекул провоспалительных цитокинов на нескольких уровнях. Согласно этой статье, введение белка IL-10 продемонстрировало облегчение боли в разнообразных состояниях,  таких как периферический неврит, экситотоксическое повреждение спинного мозга и повреждение периферического нерва.

Кроме того, недавние клинические исследования показывают, что низкие уровни в крови IL-10 и интерлейкина 4 (также противовоспалительного цитокина) могут быть важными факторами, когда речь идет о хронической боли. Потому что было обнаружено, что пациенты, борющиеся с хронической широко распространенной болью, имеют низкие концентрации из этих двух цитокинов (14).

4. Противоопухолевая активность 

Определенные цитокины в настоящее время используются в иммунотерапии рака, включая лечение лейкемии, лимфомы, меланомы, рака мочевого пузыря и рака почек. Наш организм естественным образом вырабатывает цитокины. Но когда они используются для естественного лечения рака, эти белки создаются в лаборатории, а затем вводятся в больших дозах, чем организм обычно делает самостоятельно.

По данным Национального института рака, интерлейкин-2 был первым цитокином, который оказал терапевтическое действие при раке. В 1976 году Роберт Галло, доктор медицины и Фрэнсис Рускетти, доктор философи, продемонстрировали, что этот цитокин может «значительно стимулировать рост Т-клеток и естественных киллеров, которые являются неотъемлемой частью иммунного ответа человека».

Спустя почти 10 лет другая группа исследователей во главе со Стивеном Розенбергом, доктором медицинских наук, как сообщается, успешно вылечила нескольких пациентов с распространенным метастатическим почечно-клеточным раком (тип почечного рака) и меланомой, дав им интерлейкин-2. Интерлейкин-2 стал первой противораковой иммунотерапией, одобренной FDA в США. На сегодняшний день он все еще используется для лечения метастатической меланомы и рака почки (15).

Побочные эффекты интерлейкина-2 могут включать озноб, лихорадку, усталость, увеличение веса, тошноту, рвоту, диарею и низкое кровяное давление. Редко, но наблюдаются также нарушение сердечного ритма, боль в груди и другие проблемы с сердцем. Другие интерлейкины продолжают изучаться как возможное лечение рака (16).

Как обеспечить здоровый баланс цитокинов

Цитокины являются важной темой научных исследований, которые продолжаются и по сей день. Но до сих пор считается, что здоровая диета, богатая полезными питательными веществами, физические упражнения и снижение стресса, могут помочь в поддержании здорового баланса цитокинов в организме.

Предполагается, что состояние цитокинов зависит от состояния питания. Хронический дефицит питательных веществ отрицательно влияет на наш иммунный ответ, который включает снижение выработки и активности цитокинов (17). Таким образом, употребление в пищу цельных и противовоспалительных продуктов является ключевым способом повышения статуса цитокинов в нашем организме.

Исследования in vitro также показали, что экстракт корицы повышает уровень интерлейкина-10, одновременно подавляя провоспалительные цитокины на экспериментальных моделях индуцированного воспалительного заболевания кишечника (18).

Одним из растительных продуктов, уменьшающих провоспалительные цитокины является конопляное масло. Подробнее о полезных свойствах конопляного масла читайте на нашем сайте.

Есть также продукты, которые нужно избегать. В первую очередь, это:

  • рафинированный сахар
  • молочные продукты.

Как указывает Фонд Артрита США, исследования показали, что обработанные сахара вызывают выброс воспалительных цитокинов (19).

В исследовании, опубликованном в Journal of Physiology, изучалось влияние длительных физических нагрузок на провоспалительные и противовоспалительные цитокины. Исследователи обнаружили, что в то время как физические упражнения увеличивали некоторые провоспалительные цитокины, уровни противовоспалительного интерлейкина-10 в плазме показали 27-кратное увеличение сразу после физической нагрузки, и ингибиторы цитокинов также высвобождались. Таким образом, в целом, исследование предполагает, что физические упражнения могут увеличить противовоспалительные цитокины, которые помогают уменьшить воспалительный ответ, который может возникнуть в результате длительной напряженной деятельности (20).

Исследования показали, что вначале стресс может вызывать подавление воспалительных цитокинов и активацию противовоспалительных цитокинов. Однако длительный хронический стресс дополнительно увеличивает провоспалительные цитокины, которые затем приводят к воспалительным реакциям и в конечном итоге могут вызывать различные заболевания (21). Так что это еще одна причина ежедневно практиковать медитации, горячий или контрастный душ как естественные способы снятия стресса.

Ключевые моменты о цитокинах

  • Цитокины — группа белков, созданных иммунной системой, которые действуют как химические мессенджеры.
  • Существует несколько семейств этих сигнальных белков, включая воспалительные или противовоспалительные цитокины.
  • Они особенно важны для иммунной функции и воспалительных реакций.
  • Исследования цитокинов продолжаются, но пока что текущие или потенциальные преимущества включают в себя: усиление иммунной системы, обезболивание артрита, уменьшение воспаления и роста опухолей.

Способы стимулирования здоровой функции и баланса цитокинов включают здоровую диету, основанную на цельных продуктах, которые содержат противовоспалительные компоненты и исключает воспалительные продукты, такие как сахар и молоко. Снижение стресса, в том числе регулярные физические упражнения, также могут способствовать оптимальному статусу цитокинов.

Вам также будет интересно:

Мы будем благодарны, если вы поделитесь этой статьей в социальных сетях!

blisswoman.ru

Хемокины — Википедия

Хемоки́ны (англ. chemokines от chemotactic cytokine) — большое семейство структурно-гомологичных цитокинов, которые стимулируют передвижение лейкоцитов и регулируют их миграцию из крови в ткани. У человека имеется около 50 хемокинов, которые представляют собой полипептиды массой от 8 до 10 кДа, содержащие две дисульфидные связи[1]. Выделяют четыре основных группы хемокинов: CXC, CC, CX3C и C. Действие всех хемокинов опосредовано взаимодействием с особыми рецепторами хемокинов, которые представляют собой связанные с G-белками трансмембранные рецепторы. Хемокиновые рецепторы встречаются только на поверхности клеток-мишеней, которыми выступают различные лимфоциты[2].

Хемокины образуют характерную структуру «греческий ключ», стабилизированную дисульфидными связями между консервативными остатками цистеина

Для хемокинов характерен ряд структурных особенностей. Все представители этого семейства представляют собой относительно маленькие полипептиды массой от 8 до 10 кДа. Они идентичны друг другу примерно на 20—50 % по аминокислотным последовательностями и гомологичны[en] друг другу. Общим для хемокинов является наличие нескольких консервативных аминокислотных остатков, которые играют ключевую роль в поддержании их пространственной структуры. Это, прежде всего, четыре остатка цистеина, которые образуют друг с другом дисульфидные связи, так что молекула хемокина приобретает характерную структуру, известную как «греческий ключ». Внутримолекулярные дисульфидные связи, как правило, образуются между первым и третьим, а также вторым и четвёртым остатками цистеина (номера даны по тому, в каком порядке они встречаются по ходу полипептидной цепи от N-конца к C-концу). Как правило, хемокины первоначально синтезируются в виде пропептидов (пептидов-предшественников), начинающихся с сигнального пептида длиной около 20 аминокислотных остатков (а. о.). При выделении хемокинов из клетки сигнальный пептид удаляется, и хемокин становится зрелой функциональной молекулой. В молекуле хемокина первые два остатка цистеина, образующие внутримолекулярные дисульфидные связи, располагаются недалеко от N-конца близко друг к другу, третий остаток цистеина находится в центральной части полипептидной цепочки, а четвёртый — вблизи C-конца (у хемокинов семейства C на N-конце присутствует только один остаток цистеина). После двух первых остатков цистеина в молекуле хемокина находится петля, состоящая из приблизительно 10 а. о. и известная как N-петля. После неё идёт спираль типа 310[en] из одного витка, три β-листа и концевая α-спираль. Эти спирали и листы соединяются петлевидными участками, известными как 30s-, 40s- и 50s-петли. Третий и четвёртый остатки цистеина располагаются в петлях 30s и 50s соответственно[3].

По выполняемым функциям хемокины подразделяют на две группы[4]:

  • Гомеостатические, или базальные, хемокины постоянно вырабатываются некоторыми тканями и необходимы для базальной миграции лейкоцитов. К числу гомеостатических хемокинов относятся CCL14[en], CCL19[en], CCL20[en], CCL21[en], CCL25[en], CCL27[en], CXCL12 и CXCL13[en]. Впрочем, некоторые гомеостатические хемокины могут работать и как воспалительные, например, CCL20[4].
  • Воспалительные хемокины выделяются при патологических состояниях под действием провоспалительных стимулов, таких как интерлейкин IL-1, фактор некроза опухоли α (TNF-α), липополисахариды и вирусы. Воспалительные хемокины активно участвуют в воспалительном ответе, привлекая иммунные клетки к очагу воспаления. Примером воспалительных хемокинов могут служить CXCL8, CCL2, CCL3[en], CCL4[en], CCL5[en], CCL11[en] и CXCL10[en][5].

Главная функция хемокинов заключается в управлении миграцией лейкоцитов (хоумингом[en]) в нужные ткани. Гомеостатические хемокины образуются в тимусе и лимфоидных тканях. Наиболее хорошо гомеостатическую функцию хоуминга иллюстрируют хемокины CCL19 и CCL21, которые экспрессируются в лимфатических узлах и лимфатическими эндотелиальными клетками, а их рецептор[en] — CCR7 — экспрессируется клетками органа, в который нужно направить лейкоциты. С их помощью в ходе адаптивного иммунного ответа антигенпрезентирующие клетки привлекаются в лимфоузлы. Другой рецептор гомеостатических хемокинов, CCR9, направляет лейкоциты к кишечнику, CCR10[en] — к коже, а CXCR5 способствует миграции B-лимфоцитов в лимфоузлы. Гомеостатический хемокин CXCL12, также известный как SDF-1, постоянно продуцируется костным мозгом и способствует пролиферации предшественников B-лимфоцитов в нём[6][7].

Воспалительные хемокины образуются в больших количествах в ходе инфекции или при повреждении тканей и обеспечивают миграцию воспалительных лейкоцитов в поражённую область. Типичным примером воспалительного хемокина может служить CXCL8, который функционирует как хемоаттрактант для нейтрофилов[7].

Хемокины, образуемые клетками определённой ткани, связываются с молекулами гепарансульфата[en] на эндотелиальных клетках, выстилающих посткапиллярные венулы. Благодаря этому хемокины могут быть встречены лейкоцитами, которые связаны с эндотелиальными клетками посредством молекул адгезии. Благодаря связи с эндотелием достигается высокая локальная концентрация хемокинов, вследствие чего они получают возможность связаться с рецепторами хемокинов на лейкоцитах. Связывание хемокинов с рецепторами на поверхности лейкоцитов усиливает их адгезию к эндотелиальным клеткам, что необходимо для дальнейшего выхода лейкоцита из сосуда во внешнюю ткань. Кроме того, хемокины, продуцируемые внесосудистыми тканями, образуют градиент концентрации, по которому лейкоциты движутся по ткани к очагу воспаления (этот процесс называют хемокинезом[en])[8].

Хемокины играют важную роль в развитии лимфоидных органов. Именно при помощи хемокинов B- и T-лимфоциты занимают строго определённые зоны в пределах лимфатического узла[9].

Рецепторы хемокинов относятся к числу рецепторов группы GPCR. Рецепторы этой группы активируют клеточный ответ посредством взаимодействия с тримерными[en] G-белками. G-белки, в свою очередь, стимулируют перестройки цитоскелета, полимеризацию актиновых и миозиновых филаментов, что в итоге увеличивает подвижность клетки. Кроме того, при связывании хемокинов с рецепторами меняется конформация поверхностных интегринов клетки и увеличивается сродство интегринов к их лигандам. Лейкоциты разных типов экспрессируют разные комбинации хемокиновых рецепторов, что обусловливает различные пути миграции лейкоцитов. Рецепторы хемокинов экспрессируются во всех лейкоцитах, однако наибольшее их количество и разнообразие присуще T-лимфоцитам. Некоторые рецепторы хемокинов, такие как CCR5 и CXCR4, служат корецепторами для вируса иммунодефицита человека[1].

Группы хемокинов

На основании количества и расположения N-концевых остатков цистеина хемокины подразделяют на четыре семейства, причём хемокины разных семейств кодируются разными кластерами генов. Два самых крупных семейства — это CC (или β) хемокины, у которых два первых остатка цистеина располагаются непосредственно рядом друг с другом, и CXC (или α) хемокины, у которых они разделены одним аминокислотным остатком. Хемокины семейства C имеют один остаток цистеина на N-конце, а у хемокинов семейства CX3C два остатка цистеина на N-конце разделены тремя аминокислотными остатками. Как правило, за привлечение нейтрофилов отвечают хемокины семейства CXC, моноциты чаще всего мигрируют под действием хемокинов CC, а миграция лимфоцитов зависит от хемокинов CXC и CC[1].

  1. 1 2 3 Abbas, Lichtman, Pillai, 2015, p. 39.
  2. Rubin B. S., King J. C. A relative depletion of luteinizing hormone-releasing hormone was observed in the median eminence of young but not middle-aged rats on the evening of proestrus. (англ.) // Neuroendocrinology. — 1995. — September (vol. 62, no. 3). — P. 259—269. — doi:10.1159/000127012. — PMID 8538863. [исправить]
  3. Fernandez E. J., Lolis E. Structure, function, and inhibition of chemokines. (англ.) // Annual Review Of Pharmacology And Toxicology. — 2002. — Vol. 42. — P. 469—499. — doi:10.1146/annurev.pharmtox.42.091901.115838. — PMID 11807180. [исправить]
  4. 1 2 Zlotnik A., Burkhardt A. M., Homey B. Homeostatic chemokine receptors and organ-specific metastasis. (англ.) // Nature Reviews. Immunology. — 2011. — 25 August (vol. 11, no. 9). — P. 597—606. — doi:10.1038/nri3049. — PMID 21866172. [исправить]
  5. Zlotnik A., Yoshie O. The chemokine superfamily revisited. (англ.) // Immunity. — 2012. — 25 May (vol. 36, no. 5). — P. 705—716. — doi:10.1016/j.immuni.2012.05.008. — PMID 22633458. [исправить]
  6. Le Y., Zhou Y., Iribarren P., Wang J. Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. (англ.) // Cellular & Molecular Immunology. — 2004. — April (vol. 1, no. 2). — P. 95—104. — PMID 16212895. [исправить]
  7. 1 2 Graham G. J., Locati M. Regulation of the immune and inflammatory responses by the 'atypical' chemokine receptor D6. (англ.) // The Journal Of Pathology. — 2013. — January (vol. 229, no. 2). — P. 168—175. — doi:10.1002/path.4123. — PMID 23125030. [исправить]
  8. ↑ Abbas, Lichtman, Pillai, 2015, p. 39—41.
  9. ↑ Abbas, Lichtman, Pillai, 2015, p. 31, 41.
  • Abul K. Abbas, Andrew H. Lichtman, Shiv Pillai. Cellular and Molecular Immunology : [англ.]. — Philadelphia : Elsevier Saunders, 2015. — ISBN 978-0-323-22275-4.

ru.wikipedia.org

цитокины - это... Что такое цитокины?

  • Цитокины — Цитокины  небольшие пептидные информационные молекулы. Цитокины имеют молекулярную массу, не превышающую 30 кD. Их основными продуцентами являются лимфоциты. Кроме лимфоцитов их секретируют макрофаги, гранулоциты, ретикулярные фибробласты,… …   Википедия

  • Цитокины — это особые вещества, выделяемые различными типами клеток, которые действуют на другие клетки, стимулируя или угнетая их функции. Вещества, выделяемые лимфоцитами, называют лимфокинами, а вещества, выделяемые лимфоцитами и действующие на все белые …   Медицинские термины

  • цитокины — Группа гликопротеинов, продуцируемых макрофагами и фибробластами [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN cytokines …   Справочник технического переводчика

  • Цитокин — Цитокины  небольшие пептидные информационные молекулы. Они регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз, а также… …   Википедия

  • Фагоцит — Мик …   Википедия

  • Атеросклероз — Изменения в сосуде (процесс развития а …   Википедия

  • Бронхиальная астма — Различные ингаляторы, используемые при бронхиальной астме …   Википедия

  • Белки — У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды[1])  высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… …   Википедия

  • Псориаз — Псориатическое поражение спины и рук …   Википедия

  • Хемокины — Структура интерлейкина 8, хемокина подсемейства CXC. Хемокины (англ. chemokines) семейство небольших цитокинов, секретируемых клетками позвоночных. Хемокины объединяет их небольшой размер (от 8 до 10 кДа) и наличие 4 консервативных цистеинов …   Википедия

  • dic.academic.ru

    Цитокины | Кинезиолог

    Характеристики отдельных цитокинов

    Рецепторы к цитокинам

    Определение понятия

    Краткое определение: Цитокины - это полипептидные межклеточные медиаторы, регулирующие активность клеток.

    Цитокины — это небольшие пептидные сигнальные (управляющие) молекулы, участвующие в биорегуляции, хеморегуляции и  иммунорегуляции, которые секретируются неэндокринными клетками (в основном, иммунными) и оказывают местное воздействие на соседние клетки-мишени.

    Цитокины регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз, а также обеспечивают согласованность действия иммунной, эндокринной и нервной систем на клеточном уровне в нормальных условиях и в ответ на патологические воздействия.

    Важная особенность цитокинов, отличающая их от других биолигандов, заключается в том, что они не производятся "в запас", не депонируются, не циркулируют долго по кровеносной системе, а производятся "по требованию", живут короткое время и оказывают местное воздействие на ближайшие клетки-мишени.

    Цитокины вместе с продуцирующими их клетками образуют «микроэндокринную систему», которая обеспечивает взаимодействие клеток иммунной, кроветворной, нервной и эндокринной систем. Образно можно сказать, что с помощью цитокинов клетки иммунной системы общаются друг с другом и с остальными клетками организма, передавая от цитокин-продуцирующих клеток команды на изменение состояния клеток-мишеней. И с этой точки зрения цитокины можно назвать для иммунносй системы «цитотрансмиттерами», «цитомедиаторами» или «цитомодуляторами» по аналогии с нейротрансмиттерами, нейромедиаторами и нейромодуляторами нервной системы.

    Термин "цитокины" был предложен S. Cohen в 1974 году.

    Цитокины вместе с факторами роста относятся к гистогормонам (тканевым гормонам).

    Функции цитокинов

    1. Провоспалительные, т.е. способствующие воспалительному процессу.

    2. Противовоспалительные, т.е. тормозящие воспалительный процесс.

    3. Ростовые.

    4. Дифференцировочные.

    5. Регуляторные.

    6. Активирующие.

    Виды цитокинов

    1. Интерлейкины (ИЛ) и  фактор некроза опухолей (ФНО)
    2. Интерфероны.
    3. Малые цитокины.
    4. Колониестимулирующие факторы  (КСФ).

    Функциональная классификация цитокинов

    1. Провоспалительные, обеспечивающие мобилизацию воспалительного ответа (интерлейкины 1,2,6,8, ФНОα, интерферон γ).
    2. Противовоспалительные, ограничивающие развитие воспаления (интерлейкины 4,10, TGFβ).
    3. Регуляторы клеточного и гуморального иммунитета (естественного или специфического), обладающие собственными эффекторными функциями (противовирусными, цитотоксическими).

    Механизм действия цитокинов

    Цитокины выделяются активированной цитокин-продуцирующей клеткой и взаимодействуют с рецепторами клеток-мишеней, находящихся рядом с ней. Таким образом, от одной клетки к другой в виде пептидного управляющего вещества (цитокина) передается сигнал, который запускает в ней дальнейшие биохимические реакции. Нетрудно заметить, что цитокины по механизму своего действия очень напоминают нейромодуляторы, но только они секретируются не нервными клетками, а иммунными и некоторыми другими.

    Цитокины активны в очень малых концентрациях, их образование и секреция происходит кратковременно и строго регулируются.
    Цитокинов было известно в 1995 году более 30, а в 2010 - уже более 200.

    Цитокины не имеют строгой специализации: один и тот же процесс может стимулироваться в клетке-мишени разными цитокинами. Во многих случаях в действиях цитокинов наблюдается синергизм, т.е. взаимоусиление. Цитокины не имеют антигенной специфичности. Поэтому специфическая диагностика инфекционных, аутоиммунных и аллергических заболеваний с помощью определения уровня цитокинов невозможна. Но в медицине определение их концентрации в крови даёт информацию о функциональной активности различных типов иммунокомпетентных клеток; о тяжести воспалительного процесса, его переходе на системный уровень и о прогнозе заболевания.
    Цитокины действуют на клетки, соединяясь с их поверхностными рецепторами. Связывание цитокина с рецептором приводит через ряд промежуточных этапов к активации соответствующих генов. Чувствительность клеток-мишеней к действию цитокинов изменяется в зависимости от количества цитокиновых рецепторов на их поверхности. Время синтеза цитокина, как правило, бывает коротким: лимитирующим фактором служит нестабильность молекул мРНК. Отдельные цитокины (например, ростовые факторы) продуцируются спонтанно, но большинство цитокинов секретируются индуцированно. 

    Синтез цитокинов индуцируется, чаще всего, микробными компонентами и продуктами (например, бактериальным эндотоксином). Кроме того, один цитокин может служить индуктором для синтеза других цитокинов. Так, например, интерлейкин-1 индуцирует продукцию интерлейкинов-6, -8, -12, чем обеспечивается каскадный характер цитокинового контроля. Для биологических эффектов цитокинов характерна полифункциональность, или плейотропность. Это означает, что один и тот же цитокин проявляет разнонаправленную биологическую активность, и в то же время одну и ту же функцию могут выполнять разные цитокины. Этим обеспечивается запас прочности и надёжность системы цитокиновой хеморегуляции. При совместном влиянии на клетки цитокины могут выступать как в качестве синергистов, так и в качестве антагонистов.

    Цитокины представляют собой регуляторные пептиды, продуцируемые клетками организма. Такое широкое определение неизбежно в силу гетерогенности цитокинов, но требует дополнительных пояснений. Во-первых, к цитокинам относятся простые полипептиды, более сложные молекулы с внутренними дисульфидными связями и белки, состоящие из двух и более одинаковых либо разных субъединиц, с молекулярной массой от 5 до 50 кДа. Во-вторых, цитокины являются эндогенными медиаторами, которые могут синтезироваться практически всеми ядросодержащими клетками организма, причем гены некоторых цитокинов экспрессируются во всех без исключения клетках организма.
    К системе цитокинов в настоящее время относят около 200 индивидуальных полипептидных веществ [6]. Все они имеют ряд общих биохимических и функциональных характеристик, среди которых важнейшими считаются следующие: плейотропность и взаимозаменяемость биологического действия, отсутствие антигенной специфичности, проведение сигнала путем взаимодействия со специфическими клеточными рецепторами, формирование цитокиновой сети. В связи с этим цитокины могут быть выделены в новую самостоятельную систему регуляции функций организма, существующую наряду с нервной и гормональной регуляцией [1].
    По-видимому, формирование системы цитокиновой регуляции эволюционно проходило вместе с развитием многоклеточных организмов и было обусловлено необходимостью образования посредников межклеточного взаимодействия, к которым могут быть причислены гормоны, нейропептиды и молекулы адгезии. Цитокины в этом плане являются наиболее универсальной системой регуляции, так как способны проявлять биологическую активность как дистантно после секреции клеткой-продуцентом (местно и системно), так и при межклеточном контакте, будучи биологически активными в виде мембранной формы. Этим система цитокинов отличается от молекул адгезии, выполняющих более узкие функции только при непосредственном контакте клеток. В то же время система цитокинов отличается от гормонов, которые в основном синтезируются специализированными органами и оказывают действие после попадания в систему циркуляции.
    Цитокины оказывают плейотропные биологические эффекты на различные типы клеток, главным образом, участвуя в формировании и регуляции защитных реакций организма. Защита на местном уровне развивается путем формирования типичной воспалительной реакции после взаимодействия патогенов с паттерн-распознающими рецепторами (мембранными Toll-рецепторами) с последующим синтезом так называемых провоспалительных цитокинов. Синтезируясь в очаге воспаления, цитокины воздействуют практически на все клетки, участвующие в развитии воспаления, включая гранулоциты, макрофаги, фибробласты, клетки эндотелия и эпителиев, а затем на Т- и В-лимфоциты.

    В рамках иммунной системы цитокины осуществляют взаимосвязь между неспецифическими защитными реакциями и специфическим иммунитетом, действуя в обоих направлениях. Примером цитокиновой регуляции специфического иммунитета служит дифференцировка и поддержание баланса между Т-лимфоцитами хелперами 1-го и 2-го типов. В случае несостоятельности местных защитных реакций цитокины попадают в циркуляцию, и их действие проявляется на системном уровне, что приводит к развитию острофазового ответа на уровне организма. При этом цитокины оказывают влияние практически на все органы и системы, участвующие в регуляции гомеостаза. Действие цитокинов на ЦНС приводит к изменению всего комплекса поведенческих реакций, меняется синтез большинства гормонов, острофазовых белков в печени, экспрессия генов ростовых и дифференцировочных факторов, изменяется ионный состав плазмы. Однако ни одно из происходящих изменений не носит случайного характера: все они либо нужны для непосредственной активации защитных реакций, либо выгодны в плане переключения энергетических потоков для одной лишь задачи - борьбы с внедрившимся патогеном. На уровне организма цитокины осуществляют связь между иммунной, нервной, эндокринной, кроветворной и другими системами и служат для их вовлечения в организацию и регуляцию единой защитной реакции. Цитокины как раз и служат той организующей системой, которая формирует и регулирует весь комплекс патофизиологических сдвигов при внедрении патогенов.
    В последние годы выяснилось, что регуляторная роль цитокинов в организме не ограничивается только иммунным ответом и может быть разделена на четыре основных составляющих:
    Регуляция эмбриогенеза, закладки и развития ряда органов, в том числе органов иммунной системы.
    Регуляция отдельных нормальных физиологических функций, например нормального кроветворения.
    Регуляция защитных реакций организма на местном и системном уровне.
    Регуляция процессов регенерации для восстановления поврежденных тканей.
    К цитокинам относят интерфероны, колониестимулирующие факторы (КСФ), хемокины, трансформирующие ростовые факторы; фактор некроза опухолей; интерлейкины со сложившимися исторически порядковыми номерами и некоторые другие. Интерлейкины, имеющие порядковые номера, начиная с 1, не относятся к одной подгруппе цитокинов, связанных общностью функций. Они в свою очередь могут быть разделены на провоспалительные цитокины, ростовые и дифференцировочные факторы лимфоцитов, отдельные регуляторные цитокины. Название "интерлейкин" присваивается вновь открытому медиатору в том случае, если соблюдены следующие критерии, выработанные номенклатурным комитетом Международного союза иммунологических обществ: молекулярное клонирование и экспрессия гена изучаемого фактора, наличие уникальной нуклеотидной и соответствующей ей аминокислотной последовательности, получение нейтрализующих моноклональных антител [7]. Кроме того, новая молекула должна продуцироваться клетками иммунной системы (лимфоцитами, моноцитами или другими типами лейкоцитов), иметь важную биологическую функцию в регуляции иммунного ответа, а также дополнительные функции, из-за чего ей не может быть дано функциональное название. Наконец, перечисленные свойства нового интерлейкина должны быть опубликованы в рецензируемом научном издании.
    Классификация цитокинов может проводиться по их биохимическим и биологическим свойствам, а также по типам рецепторов, посредством которых цитокины осуществляют свои биологические функции. Классификация цитокинов по строению (табл. 1) учитывает не только аминокислотную последовательность, но прежде всего третичную структуру белка, более точно отражающую эволюционное происхождение молекул [5].

    Рецепторы цитокинов

    Источники:

    meduniver.com/Medical/Physiology/353.html
    ru.wikipedia.org/wiki/Цитокины
    www.cytokines.ru/2004/2/Art2.php
    kineziolog.su/gistogormony
    www.medvuz.com/noz/268.php
    betaleukin.ru/obschaya-harakteristika-i-klassifikatsiya-tsitokinov/
    http://www.slideshare.net/crasgmu/184-8885727 (Презентация)

    kineziolog.bodhy.ru

    - виды цитокинов - Биохимия

    Интерлейкины

    К интерлейкинам относят цитокины, ответственные за межклеточные взаимодействия между лейкоцитами. Описано более 30 интерлейкинов.

    Интерлейкин 1 является провоспалительным цитокином, который может инициировать различными способами локальную воспалительную реакцию и системный синдром, проявляющийся в виде гипертермии, лихорадки, гипотонии и шока.

    Интерлейкин-2 является ключевым фактором, ответственным за активацию, рост и дифференцировку Т- и В-лимфоцитов, NK-клеток, моноцитов, макрофагов и дендритных клеток.

    Интерлейкин-6 – многофункциональный цитокин, который продуцируется разнообразными клетками. В некотором смысле он является дублером IL-1, принимает участие в острофазной реакции и синтезе IgA.

    Факторы некроза опухоли

    Название этих цитокинов происходит из ранней экспериментальной работы по лизису опухолевых клеток.

    Семейство TNF (англ. tumor necrosis factor) включает более 15 представителей, обеспечивающих проявление разных эффектов — цитотоксического, антиопухолевого, противоинфекционного. Выделяют фактор некроза опухоли TNFα, который продуцируется макрофагами, моноцитами и другими клетками, и лимфотоксины (ранее назывались TNFβ), продуцируемые T- и B-лимфоцитами.

    TNFα/β способны влиять на многие иммунные процессы и опосредовать апоптоз. Локальное высвобождение TNF стимулирует клеточную миграцию, фагоцитоз, продукцию провоспалительных цитокинов, дифференцировку Т-хелперов. Системное высвобождение TNF, аналогично IL-1, приводит к лихорадке, тяжёлой потере веса, гипотонии и шоку.

    Трансформирующие факторы роста

    Семейство TGF (англ. transforming growth factor) включает более 30 представителей. К семейству относятся факторы роста фибробластов, тромбоцитов и эндотелия, инсулиноподобный фактор роста, эпидермальный ростовой фактор и др.

    Трансформирующий фактор роста-β (TGF-β) – наиболее изученный полифункциональный ростовой фактор. TGF-β продуцируется лимфоцитами, моноцитами, макрофагами. Он оказывает влияние на клетки иммунной системы как ключевой ингибирующий фактор, подавляет пролиферацию Т- и В-клеток и функционирование моноцитов и гранулоцитов.

    Также представителями семейства TGF является группа цитокинов BMP (bone morphogenetic protein, морфогенетические белки костной ткани), играющих ключевую роль в клеточной пролиферации, дифференцировке, апоптозе и миграции. Все они а активируют или подавляют экспрессию определенных генов, например, они повышают экспрессию белка гепсидина, главного регулятора обмена железа в организме.

    Интерфероны

    Интерфероны вырабатываются многими клетками в ответ на вирусную инфекцию и другие стимулы. Они блокируют репликацию вируса в соседних клетках и участвуют во взаимодействии между клетками иммунной системы.

    Различают две группы интерферонов:

    • I типа, интерфероны α и β (IFNα и IFNβ) – оказывают противовирусные и противоопухолевые эффекты, продуцируются мононуклеарными фагоцитами и фибробластами. Их продукцию усиливают пирогенное действие IL-1 и понижение рН в межклеточной жидкости на фоне повышения температуры,
    • II типа, интерферон γ (IFNγ) – продуцируется Т-лимфоцитами и NK-клетками. Регулирует специфический иммунный ответ и неспецифическую резистентность. Стимулирует активность Т- и В-лимфоцитов, моноцитов, макрофагов и нейтрофилов.

    Колониестимулирующие факторы

    Колониестимулирующие факторы (англ. CSF, colony-stimulating factor) – это цитокины, регулирующие деление и дифференцировку костно-мозговых стволовых клеток и клеток кроветворного ростка. Кроме того, они могут стимулировать дифференцировку и функциональную активность некоторых клеток вне костного мозга:

    • гранулоцитарный (G-CSF) продуцируется в основном макрофагами, а также фибробластами. Стимулирует деление и дифференцировку стволовых клеток, в некоторой степени усиливает активность нейтрофилов и эозинофилов,
    • макрофагальный (M-CSF) вырабатывается моноцитами, макрофагами, эндотелиальными клетками и фибробластами. Активирует пролиферацию предшественников макрофагов в костном мозге. является лейкопоэтическим фактором для моноцитов,
    • гранулоцитарно-макрофагальный (GM-CSF) продуцируется макрофагами, Т-лимфоцитами, моноцитами, фибробластами и эндотелиоцитами. Стимулирует деление и дифференцировку предшественников гранулоцитов и макрофагов, активирует их функцию, влияет на пролиферацию Т-клеток.

    Хемокины

    Хемокины синтезируются эпителиальными клетками, фибробластами, нейтрофилами, моноцитами. Описано около 50 различных хемокинов.

    Существует два класса хемокинов:

    • α-хемокины (например, IL-8) – опосредуют преимущественно хемотаксис нейтрофилов,
    • β-хемокины (например, RANTES) – влияют на хемотаксис моноцитов и лимфоцитов.

    Хемокины играют важную роль в координации движения Т- и В-лимфоцитов, дендритных и других клеток при их дифференцировке, участии в иммунном ответе и реализации эффекторного потенциала. Хемокины инициируют локальное воспаление в результате вовлечения клеток в процесс хемотаксиса, а далее в процесс активации их функции.

    biokhimija.ru

    6. Цитокиновая сеть. Классификация и функция цитокинов.

    Цитокины - группа  растворимых клеточных пептидных медиаторов,  продуцирующихся разными клетками организма и играющих важную роль в  обеспечении физиологических процессов в норме и при патологии.

    Свойства цитокинов:

    • полипептиды средней ММ (< 30 кД)

    • регулируют силу и продолжительность реакций иммунитета и воспаления

    • секретируются локально

    • действуют как паракринные и аутокринные факторы

    • свойство избыточности (одни и те же цитокины вырабатываются разными клетками)

    • взаимодействуют с высокоаффинными рецепторами к цитокинам на мембранах клеток

    • плейотропность (одни и теже цитокины действуют на различные клетки-мишени)

    • каскадность («цитокиновая сеть»)

    • синергизм, антагонизм

    Классификация цитокинов:

    • Интерлейкины (ИЛ1-ИЛ18) – секреторные регуляторные белки иммунной системы, обеспечивающие медиаторные взаимодействия в иммунной системе и связь ее с другими системами организма.

    • Интерфероны (ИФНα,β,γ) – противовирусные агенты с выраженным иммунорегуляторным действием.

    • Факторы некроза опухолей (ФНОα,ФНОβ) – цитокины с цитотоксическим и регуляторным действием.

    • Факторы роста (ФРФ, ФРЭ, ТФР β) – регуляторы роста, дифференцировки и функциональной активности клеток.

    • Колониестимулирующие факторы (ГМ-КСФ, Г-КСФ,   М-КСФ) – стимуляторы роста и дифференцировки гемопоэтических клеток.

    • Хемокины (RANTES, MCP-1, MIP-1a) – хемоаттрактанты для лейкоцитов.

    Классификация цитокинов по биологической активности:

    1. Цитокины – регуляторы воспалительных реакций:

    • провоспалительные цитокины (ИЛ-1, ИЛ-6, ИЛ-8, ФНОα, ИФНγ, МИФ)

    • противовоспалительные (ТРФβ, ИЛ-10, ИЛ-4,   ИЛ-13).

    1. Цитокины – регуляторы клеточного антигенспецифического иммунного ответа (ИЛ-1, ИЛ-2, ИЛ-12, ИЛ-10, ИФНγ, ТРФβ).

    2. Цитокины – регуляторы гуморального антигенспецифического иммунного ответа(ИЛ-4, ИЛ-5, ИЛ-6, ИЛ-10, ИЛ-13, ИФНγ, ТРФβ).

    7. Эндоцитозные, сигнальные и растворимые рецепторы врожденного иммунитета.

    Особую роль в реакциях врожденного иммунитета играют паттернраспознающие рецепторы (PRR, особенно Toll-подобные рецепторы — TLR), распознающие компоненты микроорганизмов и эндогенные сигналы опасности, которые возникают в организме. В результате действия высокоэффективных механизмов врожденная иммунная система определяет потенциальные патогены, распознавая ЛПС, пептидогликаны, липопептиды, флагеллин и многие другие консервативные и неизменяющиеся структурные молекулы.

    В этом отношении врожденную иммунную систему рассматривают как первую линию защиты против патогенных микроорганизмов у млекопитающих. Одна из целей врожденного иммунитета сводится к раннему установлению различий между патогенами и непатогенами, что особенно важно в пограничных тканях (слизистые оболочки пищеварительного тракта и дыхательных путей, кожа и т.д

    Рецепторы опознавания паттерна классифицируют по специфичности к лиганду, функции, локализации и по происхождению в эволюции. По функции они делятся на два класса: сигнальные и эндоцитозные.

    Сигнальные рецепторы опознавания паттерна включают, например, толл-подобные рецепторы.

    Эндоцитозные рецепторы опознавания паттерна, например, маннозные рецепторы макрофагов, необходимы для прикрепления, поглощения и процессирования микроорганизмов фагоцитами независимо от внутриклеточной передачи регуляторного сигнала. Кроме патогенов они опознают также апоптозные клетки.

    Мембранные рецепторы опознавания паттерна

    Рецепторы-киназы

    Впервые рецепторы опознавания паттерна были открыты у растений[1]. Позже множество гомологичных рецепторов было обнаружено при анализе геномов растений (у риса 370, у Arabidopsis — 47). В отличие от рецепторов опознавания паттерна у животных, которые связывают внутриклеточные протеинкиназы с помощью адапторных белков, растительные рецепторы представляют собой один белок, состоящий из нескольких доменов, внеклеточного, опознающего патоген, внутриклеточного, обладающего киназной активностью, и трансмембранного, связывающего первые два.

    Толл-подобные рецепторы

    Этот класс рецепторов опознает патогены вне клеток или в эндосомах[2]. Они были впервые обнаружены у дрозофилы и индуцируют синтез и секрецию цитокинов, необходимых для активации иммунного ответа. В настоящее время толл-подобные рецепторы обнаружены у многих видов. У животных их насчитывают 11 (TLR1-TLR11). Взаимодействие толл-подобных рецепторов с лигандами приводит к индукции сигнальных путей NF-kB и МАР-киназы, которые, в свою очередь, индуцируют синтез и секрецию цитокинов и молекул, стимулирующих презентацию антигена[3].

    Цитоплазматические рецепторы опознавания паттерна

    Nod-подобные рецепторы

    Nod-подобные рецепторы — это цитоплазматические белки с различными функциями. У млекопитающих их найдено около 20, и большинство из них подразделяют на два главных подсемейства: NOD и NALP. Кроме того, к этому семейству рецепторов относят трансактиватор главного комплекса гистосовместимости класса II и некоторые другие молекулы. Опознавая патоген внутри клетки, рецепторы олигомеризуются и образуют инфламмасому, активирующую ферменты протеолитической активации цитокинов, например, интерлейкина 1 бета. Рецепторы активируют также сигнальный путь NF-kB и синтез цитокинов[4][5].

    NODS

    Известны два главных представителя: NOD1 и NOD2. Связывают два разных бактериальных пептидогликана[6].

    NALPS

    Известно 14 белков (NALP1 — NALP14), которые активируются бактериальными пептидогликанами, ДНК, двухцепочечной РНК, парамиксовирусом и мочевой кислотой. Мутации некоторых из NALPS являются причиной наследственных аутоиммунных заболеваний.

    Другие Nod-подобные рецепторы

    Такие молекулы, как IPAF и NAIP5/Birc1e также индуцируют протеолитическую активацию цитокинов в ответ на появление сальмонеллы и легионеллы.

    РНК хеликазы

    Индуцируют антивирусный иммунный ответ после активации вирусной РНК. У млекопитающих это три молекулы: RIG-I, MDA5 и LGP2.

    Секретируемые рецепторы опознавания паттерна

    Многие рецепторы опознавания паттерна, например, рецепторы комплемента, коллектины и пентраксины, к которым, в частности, относится C-реактивный белок, не остаются в синтезирующей их клетке и попадают в сыворотку крови[7]. Одним из важнейших коллектинов является лектин, связывающий маннозу; он опознает широкий спектр патогенов, в состав клеточной стенки которых входит манноза, и индуцирует лектиновый путь активации системы комплемента[8].

    studfile.net

    цитокины - это... Что такое цитокины?

  • Цитокины — Цитокины  небольшие пептидные информационные молекулы. Цитокины имеют молекулярную массу, не превышающую 30 кD. Их основными продуцентами являются лимфоциты. Кроме лимфоцитов их секретируют макрофаги, гранулоциты, ретикулярные фибробласты,… …   Википедия

  • Цитокины — это особые вещества, выделяемые различными типами клеток, которые действуют на другие клетки, стимулируя или угнетая их функции. Вещества, выделяемые лимфоцитами, называют лимфокинами, а вещества, выделяемые лимфоцитами и действующие на все белые …   Медицинские термины

  • цитокины — Группа гликопротеинов, продуцируемых макрофагами и фибробластами [http://www.dunwoodypress.com/148/PDF/Biotech Eng Rus.pdf] Тематики биотехнологии EN cytokines …   Справочник технического переводчика

  • цитокины — белки, синтезированные активированными клетками иммунной системы и обусловливающие межклеточные взаимодействия при кроветворении, воспалении, иммунном ответе и межсистемных контактах. Как правило, это локальные гормоны, действующие на основе… …   Биологический энциклопедический словарь

  • Цитокин — Цитокины  небольшие пептидные информационные молекулы. Они регулируют межклеточные и межсистемные взаимодействия, определяют выживаемость клеток, стимуляцию или подавление их роста, дифференциацию, функциональную активность и апоптоз, а также… …   Википедия

  • Фагоцит — Мик …   Википедия

  • Атеросклероз — Изменения в сосуде (процесс развития а …   Википедия

  • Бронхиальная астма — Различные ингаляторы, используемые при бронхиальной астме …   Википедия

  • Белки — У этого термина существуют и другие значения, см. Белки (значения). Белки (протеины, полипептиды[1])  высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа аминокислот. В живых организмах… …   Википедия

  • Псориаз — Псориатическое поражение спины и рук …   Википедия

  • Хемокины — Структура интерлейкина 8, хемокина подсемейства CXC. Хемокины (англ. chemokines) семейство небольших цитокинов, секретируемых клетками позвоночных. Хемокины объединяет их небольшой размер (от 8 до 10 кДа) и наличие 4 консервативных цистеинов …   Википедия

  • universal_ru_en.academic.ru

    Функции цитокинов

    Функция цитокинов

    Цитокины-эффекторы

    Гемопоэтическая

    FS, G-CSF, M-СSF, GM-CSF, IL-1, IL-3, IL-5, IL-6, IL-7, IL-9, IL-11, IL-12, TNF, TGF, эритропоэтин, тромбопоэтин и др.

    Иммуностимулирующая

    IL-1,,IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-16, TNF, IF, TGF

    Провоспалительная,

    воспалительная

    IL-1, IL-5, IL-6, IL-8, IL-9, IL-11, IL-12,IL-16, IL-17, IL-18, TNF, IF, IF, MCAF, MCP, LCF, MIF-1,.

    Иммуносупрессивная

    Il-4, IL-10, IL-13, RAIL-1, TGF

    Противовоспалительная

    IL-4, IL-10, IL-13, RAIL-1, TGF

    Лимфопоэтическая

    IL-1, IL-2, IL-4, IL-6, IL-7, IL-9, IL-10, IL-12, IL-13, IL-14, IL-15, IL-17, IL-18

    Эозинофилопоэтическая

    IL-3, IL-5, IL-13

    Хемоаттрактантная

    IL-8, IL-16,IL-12, If, If, GM-CSM

    Влияние цитокинов осуществляется за счет взаимодействия со специфическими мембранными рецепторами клетки-мишени, которые в большинстве случаев представлены пептидными или гликопротеидными цепями, встроенными в клеточную мембрану. В зависимости от функции, выполняемой рецептором, они могут быть одно-, двух- и трех-цепочечными. Цитокины всегда взаимодействуют с внешней, экстрацеллюлярной частью рецептора, обладающей ферментативной активностью. Сигнал с этой части рецептора передается внутрь клетки, благодаря чему возникает цикл специфических ответных реакций. Эффективность действия рецептора зависит от его аффинности, то есть от того, какое минимальное количество лиганда требуется для образования прочного комплекса. В большинстве случаев аффинность зависит от числа полипептидных или гликопротеидных цепей, входящих в рецептор. Благодаря тому, что отдельные цепи, составляющие различные рецепторы, могут иметь одинаковое строение, разные цитокины способны связываться с одним и тем же рецептором и оказывать сходное действие на одну и ту же клеточную мишень. Этим во многом объясняется плейотропность (разнообразие действий) цитокинов. Более того, указанными особенностями обеспечивается высокая биологическая надежность действия цитокинов, ибо они довольно часто подменяют друг друга, не допуская сбоя в деятельности иммунной системы.

    3.11.7.1. Провоспалительные цитокины

    Провоспалительные цитокины синтезируются, секретируются и действуют через свои рецепторы на клетки мишени на ранней стадии воспаления, участвуя в запуске специфического иммунного ответа, а также в его эффекторной фазе. Ниже мы приводим краткую характеристику основных провоспалительных цитокинов.

    IL-1 – соединение, секретируемое при антигенной стимуляции моноцитами, макрофагами, клетками Лангерганса, дендритными клетками, кератиноцитами, мозговыми астроцитами и микроглией, эндотелиальными, эпителиальными, мезотелиальными клетками, фибробластами,NК-лимфоцитами, нейтрофилами, В-лимфоцитами, гладкомышечными клетками, клетками Лейдига и Сертоли и др. Приблизительно 10% базофилов и тучных клеток также продуцируют IL-1. Перечисленные факты свидетельствуют о том, чтоIL-1может секретироваться непосредственно в кровь, тканевую жидкость и лимфу. Все клетки, в которых образуется этот цитокин, не способны к спонтанному синтезуIL-1и отвечают его продукцией и секрецией в ответ на действие инфекционных и воспалительных агентов, микробных токсинов, разнообразных цитокинов, активных фрагментов комплемента, некоторых активных факторов свертывания крови и других. По образному выражениюA. Bellau, IL-1 – это семья молекул на все случаи жизни.IL-1 подразделяются на 2 фракции –и, являющиеся продуктами разных генов, но имеющие сходные биологические свойства. Обе эти формы образуются из соответствующих молекул предшественников с одинаковой молекулярной массой – 31 кДа. В результате биохимических превращений в конечном итоге формируются одноцепочечные биологически активные полипептиды с молекулярной массой 17,5 кДа. Практически весь IL-1остается внутри клетки или связывается с мембраной. В отличие от IL-1, IL-1активно секретируется клетками и у человека является основной секреторной формой IL-1. В то же время оба интерлейкина обладают одинаковым спектром биологической активности и конкурируют за связывание одного и того же рецептора. Следует, однако, учитывать, чтоIL-1является, в основном, медиатором местных защитных реакций, тогда какIL-1осуществляет свое действие как на местном, так и на системном уровне. Опыты с рекомбинантным IL-1 показали, что у данного цитокина существует не менее 50 различных функций, а мишенями служат клетки практически всех органов и тканей. ВлияниеIL-1, в основном, направлено на Тх1, хотя он способен стимулировать Тх2 и В-лимфоциты. В костном мозге под его воздействием увеличивается количество кроветворных клеток, находящихся в стадии митоза.IL-1 может оказывать действие на нейтрофилы, усиливая их двигательную активность и тем самым способствуя фагоцитозу.Этот цитокин участвует в регуляции функций эндотелия и системы свертывания крови, индуцируя прокоагулянтную активность, синтез провоспалительных цитокинов и экспрессию на поверхности эндотелия адгезивных молекул, обеспечивающих роллинг и прикрепление нейтрофилов и лимфоцитов, в результате чего в сосудистом русле развивается лейкопения и нейтропения. Действуя на клетки печени, он стимулирует образование острофазных белков. Установлено, что IL-1 является главным медиатором развития местного воспаления и острофазного ответа на уровне организма. Кроме того, он ускоряет рост кровеносных сосудов после их повреждения. Под воздействиемIL-1в крови уменьшается концентрация железа и цинка и увеличивается экскреция натрия. Наконец, как это установлено в последнее время,IL-1способен увеличивать количество циркулирующего оксида азота. Последний, как известно, играет чрезвычайно важную роль в регуляции кровяного давления, способствует дезагрегации тромбоцитов и усиливает фибринолиз. Следует заметить, что под воздействиемIL-1 усиливается образование розеток нейтрофилов и лимфоцитов с тромбоцитами, что играет важную роль в осуществлении неспецифической резистентности, иммунитета и гемостаза (Ю.А. Витковский). Все это говорит о том, что IL-1 стимулирует развитие целого комплекса защитных реакций организма, направленных на ограничение распространения инфекции, элиминацию внедрившихся микроорганизмов и восстановление целости поврежденных тканей.IL-1 оказывает влияние на хондроциты, остеокласты, фибробласты и панкреатические-клетки. Под его влиянием усиливается секреция инсулина, АКТГ и кортизола. ДобавлениеIL-1илиTNFв первичную культуру клеток гипофиза уменьшает секрецию тиреотропного гормона.

    IL-1 образуется в центральной нервной системе, где он может выполнять роль медиатора. Под воздействиемIL-1наступает сон, сопровождающийся наличием-ритма (медленный сон). Он также способствует синтезу и секреции астроцитами фактора роста нервных волокон. Показано, что содержание IL-1 повышается при мышечной работе. Под влиянием IL-1 усиливается продукция самого IL-1, а также IL-2, IL-4, IL-6, IL-8 и TNF. Последний, кроме того, индуцирует синтез IL-1, IL-6 и IL-8.

    Многие провоспалительные эффекты IL-1 осуществляются в комплексе с TNFиIL-6: индукция лихорадки, анорексия, влияние на гемопоэз, участие в неспецифической противоинфекционной защите, секреции острофазных белков и другие (А.С. Симбирцев).

    IL-6 – мономер с молекулярной массой 19-34 кДа. Он продуцируется стимулированными моноцитами, макрофагами, эндотелиоцитами, Тх2, фибробластами, гепатоцитами, клетками Сертоли, клетками нервной системы, тиреоцитами, клетками островков Лангерганса и др. Вместе сIL-4 и IL-10 он обеспечивает рост и дифференцировку В-лимфоцитов, способствуя переходу последних в антителопродуценты. Кроме того, он как и IL-1, стимулирует гепатоциты, приводя к образованию белков острой фазы.IL-6 действует на гемопоэтические клетки-предшественники и, в частности, стимулирует мегакариоцитопоэз. Это соединение обладает противовирусной активностью. Существуют цитокины, входящие в семейство IL-6, – это онкостатин М (OnM), фактор, ингибирующий лейкемию, ресничный нейротропный фактор, кардиотропин-1. Их влияние не затрагивает иммунную систему. Семейство IL-6 проявляет действие на эмбриональные стволовые клетки, вызывает гипертрофию миокарда, синтез БОВ, поддержание пролиферации клеток миеломы и кроветворных предшественников, дифференцировку макрофагов, остеокластов, нервных клеток, усиление тромбоцитопоэза и др.

    Следует заметить, что у мышей с прицельной инактивацией (нокаутом) гена, кодирующего общий компонент рецепторов для цитокинов семейства IL-6, развиваются многочисленные отклонения в различных системах организма, несовместимые с жизнью. Наряду с нарушением кардиогенеза у эмбрионов таких мышей имеет место резкое снижение числа клеток-предшественников различных кроветворных рядов, а также резкое уменьшение размеров тимуса. Эти факты говорят о чрезвычайной важности IL-6 в регуляции физиологических функций (А.А. Ярилин).

    Между провоспалительными цитокинами, которые действуют как синергисты, существуют очень сложные взаиморегулирующие отношения. Так, IL-6ингибирует продукциюIL-1 иTNF, хотя оба эти цитокина являются индукторами синтезаIL-6. Кроме того,IL-6, воздействуя на гипоталамо-гипофизарную систему, приводит к усилению продукции кортизола, ингибирующего экспрессию генаIL-6, как и генов других провоспалительных цитокинов.

    К семейству IL-6относится такжеонкостатин М (OnM),обладающий чрезвычайно широким спектром действия. Его молекулярная масса равна 28 кДа. Установлено, что OnMспособен тормозить рост ряда опухолей. Под его воздействием стимулируется образованиеIL-6, активатора плазминогена, вазоактивных пептидов кишечника, а также БОВ. Из сказанного вытекает, чтоOnMдолжен играть не последнюю роль в регуляции иммунного ответа, свертывания крови и фибринолиза.

    IL-8относится к так называемому семейству хемокинов, стимулирующих хемотаксис и хемокинез и насчитывающих до 60 индивидуальных веществ со своими особенностями строения и биологическими свойствами. ЗрелыйIL-8существует в нескольких формах, различающихся по длине полипептидной цепи. Образование той или иной формы зависит от специфических протеаз, воздействующих наN-конец молекулы негликозированного предшественника. В зависимости от того, какими клетками синтезируетсяIL-8, в его состав входит различное число аминокислот. Наибольшей биологической активностью обладает формаIL-8, состоящая из 72 аминокислот (А.С. Симбирцев).

    IL-8 высвобождается полиморфно-ядерными лейкоцитами, моноцитами, макрофагами, мегакариоцитами, нейтрофилами, Т-лимфоцитами (Тх), фибробластами, хондроцитами, кератиноцитами, эндотелиальными и эпителиальными клетками, гепатоцитами и микроглией.

    Продукция IL-8осуществляется в ответ на действие биологически активных соединений, в том числе провоспалительных цитокинов, а такжеIL-2, IL-3,IL-5,GM-CSF, различных митогенов, липополисахаридов, лектинов, продуктов распада вирусов, тогда как противовоспалительные цитокины (IL-4, IL-10) снижают выработку IL-8. Его активация и выделение происходит также под влиянием тромбина, активатора плазминогена, стрептокиназы и трипсина, что указывает на тесную связь между функцией этого цитокина и системой гемостаза.

    Синтез IL-8 осуществляется на действие самых различных эндогенных или экзогенных раздражителей, возникающих в очаге воспаления при развитии местной защитной реакции на внедрение патогенного агента. В этом отношении продукцияIL-8имеет много общего с другими провоспалительными цитокинами. В то же время синтезIL-8подавляют стероидные гормоны,IL-4, IL-10, If и If.

    IL-8 стимулирует хемотаксис и хемокинез нейтрофилов, базофилов, Т-лимфоцитов (в меньшей степени) и кератиноцитов, вызывая дегрануляцию этих клеток. При внутрисосудистом введении IL-8отмечается быстрая и резкая гранулоцитопения, за которой неукоснительно следует повышение уровня нейтрофилов в периферической крови. При этом нейтрофилы мигрируют в печень, селезенку, легкие, но не в поврежденные ткани. Более того, в эксперименте показано, что внутривенное введениеIL-8блокирует миграцию нейтрофилов во внутрикожные области воспаления.

    В нестимулированных нейтрофилах IL-8вызывает освобождение белка, связанного с витамином В12, из специфических гранул и желатиназы – из секреторных везикул. Дегрануляция азурофильных гранул в нейтрофилах наступает лишь после их стимуляции цитохалазином-В. При этом высвобождается эластаза, миелопероксидаза,-глюкоронидаза и другие эластазы и наступает экспрессия адгезивных молекул на мембране лейкоцита, обеспечивающих взаимодействие нейтрофила с эндотелием. Следует заметить, чтоIL-8не способен вызвать пусковой механизм респираторного взрыва, но может усиливать действие других хемокинов на этот процесс.

    IL-8 способен стимулировать ангиогенез, благодаря активации пролиферативных процессов в эндотелиоцитах и гладкомышечных клетках, что играет важную роль в репарации тканей. Кроме того, он может подавлять синтезIgE, возникающий под воздействиемIL-4.

    По всей видимости, IL-8играет не последнюю роль в местном иммунитете слизистых оболочек. У здоровых людей он обнаружен в секретах слюнных, слезных, потовых желез, в молозиве. Установлено, что гладкомышечные клетки в трахее человека способны продуцировать незначительные количестваIL-8. Под влиянием брадикинина продукцияIL-8 возрастает в 50 раз. Блокаторы белкового синтеза тормозят синтез IL-8. Есть все основания полагать, что местно IL-8 обеспечивает течение защитных реакций при воздействии патогенной флоры в верхних дыхательных путях.

    IL-12 открыт более десяти лет тому назад, однако его свойства изучены лишь в последние годы. Он образуется макрофагами, моноцитами, нейтрофилами, дендритными клетками и активированными В-лимфоцитами. В гораздо меньшей степени IL-12 способны секретировать кератиноциты, клетки Лангерганса и покоящиеся В-лимфоциты. Кроме того, он продуцируется клетками микроглии и астроцитами, для чего необходима их кооперация. IL-12 представляет собой гетеродимер, состоящий из двух ковалентно связанных полипептидных цепей: тяжелой (45 кДа) и легкой (35 кДа). Биологическая активность присуща лишь димеру, каждая из отдельных цепей подобными свойствами не обладает.

    IL-12 вызывает пролиферацию Тх1, активирует натуральные киллеры (NК) и цитотоксические лимфоциты (CTL), способствует выработкеIfи индукции адгезивных молекул, а также стимулирует гемопоэтические предшественники и может быть отнесен к противовоспалительным цитокинам. IL-12 также способен усиливать пролиферацию покоящихся мононуклеаров, вызванную субоптимальными дозами IL-2. Этот провоспалительный цитокин стимулирует клетки памяти и усиливает противоопухолевый иммунитет. Некоторые внутриклеточные паразиты при блокаде Tх1 могут индуцировать синтез макрофагамиIL-12, который, в свою очередь, способен запустить независимый синтезIfNК-клетками. В тоже времяIL-12 может блокировать деятельность Тх2, ингибировать индуцируемуюIL-4продукциюIgEВ-лимфоцитами. Это хемотаксический фактор для NК-клеток и нейтрофилов, но не для моноцитов.

    И все же основными клетками мишенями для IL-12 остаются NК, Т-лимфоциты (СD4+ иCD8+)и в меньшей степени В-лимфоциты. Можно считать, что он служит связующим звеном между макрофагами и моноцитами, способствуя повышению активности Тх1 и цитотоксических клеток. Тем самым этот цитокин вносит значительный вклад в обеспечение противовирусной и противоопухолевой защиты. Индукторами синтеза IL-12 служат микробные компоненты и провоспалительные цитокины.

    IL-12 относится к гепаринсвязывающим цитокинам, что позволяет предположить его участие в процессе гемостаза.

    В последние годы было показано, что IL-12 является ключевым цитокином для усиления клеточно-опосредованного иммунного ответа и эффективной противоинфекционной защиты против вирусов, бактерий, грибков и простейших. Протективные эффекты IL-12 при инфекциях опосредованы If-зависимыми механизмами, усиленной продукцией оксида азота и Т-клеточной инфильтрацией. Однако главный его эффект заключается в синтезировании If. Последний же, накапливаясь в организме, способствует синтезу IL-12 макрофагами. Важнейшей функцией IL-12 является направление дифференцировкиTх0 в сторону Тх1. В этом процессе IL-12 является синергистом If. Между тем, после дифференцировки Тх1 перестают нуждаться в IL-12 в качестве костимулирующей молекулы. ОтIL-12 в значительной степенизависит характер иммунного ответа: будет ли он развиваться по клеточному или гуморальному иммунитету.

    Одной из важнейших функций IL-12 является резкое усиление дифференцировки В-лимфоцитов в антителопродуцирующие клетки. Этот цитокин используется для лечения больных аллергиями и бронхиальной астмой.

    IL-12 оказывает ингибирующее влияние на продукцию IL-4Т-лимфоцитами памяти, опосредованное через АПК. В свою очередь IL-4 подавляет продукцию и секрецию IL-12.

    Синергистами IL-12 являются IL-2 и IL-7, хотя оба эти цитокина зачастую действуют на различные клетки мишени. Физиологическим антагонистом и ингибитором IL-12 служит IL-10 – типичный противовоспалительный цитокин, тормозящий функцию Тх1.

    IL-16– выделяется Т-лимфоцитами, главным образом стимулированнымиCD4+,СD8+, эозинофилами и эпителиальными клетками бронхов. Повышенная секрецияIL-16обнаружена при обработке Т-клеток гистамином. По химической природе является гомотетрамером с молекулярной массой 56000-80000 Д. Это иммуномодулирующий и провоспалительный цитокин, ибо он является хемотаксическим фактором для моноцитов и эозинофилов, а также Т-лимфоцитов (CD4+), усиливая их адгезию.

    Следует заметить, что предварительная обработка CD4+рекомбинантнымIL-16 подавляет ВИЧ-1-промоторную активность приблизительно на 60%. На основании приведенных фактов выдвинута гипотеза, согласно которой действие IL-16 на репликацию ВИЧ-1 наблюдается на уровне вирусной экспрессии.

    IL-17образуется макрофагами. В настоящее время получен рекомбинантныйIL-17и изучены его свойства. Оказалось, что под влияниемIL-17макрофаги человека усиленно синтезируют и выделяют провоспалительные цитокины –IL-1и TNF, что находится в прямой зависимости от дозы исследуемого цитокина. Максимальный эффект при этом отмечается приблизительно через 9 часов после начала инкубации макрофагов с рекомбинантнымIL-17. Кроме того,IL-17стимулирует синтез и выделениеIL-6, IL-10, IL-12, PgE2, антагонистаRIL-1и стромализина. Противовоспалительные цитокины –IL-4 иIL-10– полностью отменяют вызываемоеIL-17выделениеIL-1, аGTF2 и IL-13лишь частично блокируют этот эффект.IL-10подавляет индуцируемое высвобождениеTNF, тогда какIL-4, IL-13 иGTF2в меньшей степени супрессируют секрецию данного цитокина. Представленные факты убедительно свидетельствуют о том, чтоIL-17 должен играть важную роль в запуске и поддержании воспалительного процесса.

    IL-18 по биологическим эффектам является функциональным дублером и синергистом IL-12. Основными продуцентами IL-18 служат макрофаги и моноциты. По своей структуре он чрезвычайно напоминает IL-1. Синтезируется IL-18 в виде неактивной молекулы-предшественника, для перевода которой в активную форму необходимо участие IL-1-конвертирующего энзима.

    Под воздействием IL-18повышается антимикробная резистентность организма. При бактериальной инфекцииIL-18совместно с IL-12 или с If/регулирует продукцию IfТх и NК-клетками и усиливает экспрессиюFas-лиганда на NК и Т-лимфоцитах. За последнее время выяснено, чтоIL-18является активатором CTL. Под его влиянием усиливается активность клетокCD8+по отношению к клеткам злокачественных опухолей.

    Как и IL-12, IL-18 способствует преимущественной дифференцировке Тх0 в Тх1.Кроме того, IL-18 приводит к образованию GM-CSFи тем самым усиливает лейкопоэз и ингибирует формирование остеокластов.

    IL-23 состоит из 2 субъединиц (р19 и р40), входящих в составIL-12. По отдельности каждая из перечисленных субъединиц не обладает биологической активностью, однако совместно они, как иIL-12, усиливают пролиферативную активность Т-лимфобластов и секрециюIf. IL-23 обладает более слабой активностью, чемIL-12.

    TNF представляет собой полипептид с молекулярной массой около 17 кД (состоит из 157 аминокислот) и делится на 2 фракции –и. Обе фракции обладают приблизительно одинаковыми биологическими свойствами и воздействуют на одни и те же клеточные рецепторы.TNF секретируется моноцитами и макрофагами, Тх1, эндотелиальными и гладкомышечными клетками, кератиноцитами,NK-лимфоцитами, нейтрофилами, астроцитами, остеобластами и др. В меньшей степениTNFобразуется некоторыми опухолевыми клетками. Главным индуктором синтезаTNFявляется бактериальный липополисахарид, а также другие компоненты бактериального происхождения. Кроме того, синтез и секрециюTNF стимулируют цитокины:IL-1, IL-2, Ifи, GM-CSFи др. Ингибируют синтезTNFвирус Эпштейн-Барра,If/, IL-4, IL-6, IL-10, G-CSF, TGF и др.

    Основным проявлением биологической активности TNF является воздействие на некоторые опухолевые клетки. При этомTNFприводит к развитию геморрагического некроза и тромбоза приносящих кровеносных сосудов. Одновременно под воздействиемTNFповышается естественная цитотоксичность моноцитов, макрофагов иNK-клеток. Особенно интенсивно регрессия опухолевых клеток наступает при совместном действии TNFи If.

    Под влиянием TNFпроисходит угнетение синтеза липопротеинкиназы – одного из главных ферментов, регулирующих липогенез.

    TNF, являясь медиатором цитотоксичности, способен тормозить клеточную пролиферацию, дифференцировку и функциональную активность многих клеток.

    TNFпринимает непосредственное участие в иммунном ответе. Он играет чрезвычайно важную роль в первые моменты возникновения воспалительной реакции, ибо активирует эндотелий и способствует экспрессии адгезивных молекул, что приводит к прилипанию гранулоцитов к внутренней поверхности сосуда. Под влияниемTNFнаступает трансэндотелиальная миграция лейкоцитов в очаг воспаления. Этот цитокин активирует гранулоциты, моноциты и лимфоциты и индуцирует продукцию других провоспалительных цитокинов –IL-1, IL-6, If, GM-CSF, которые являются синергистамиTNF.

    Образуясь местно, TNFв очаге воспаления или инфекционного процесса резко повышает фагоцитарную активность моноцитов и нейтрофилов и, усиливая процессы перекисного окисления, способствует развитию завершенного фагоцитоза. Действуя совместно с IL-2, TNFзначительно увеличивает продукцию IfТ-лимфоцитами.

    TNFучаствует также в процессах деструкции и репарации, так как вызывает рост фибробластов и стимулирует ангиогенез.

    За последние годы установлено, что TNFявляется важным регулятором гемопоэза. Непосредственно или совместно с другими цитокинамиTNFвлияет на все виды гемопоэтических клеток.

    Под его воздействием усиливается функция системы гипоталамус-гипофиз-надпочечники, а также некоторых желез внутренней секреции – щитовидной железы, яичек, яичников, поджелудочной железы и других (А.Ф. Возианов).

    Интерфероны образуются практически любыми клетками человеческого организма, однако в основном их продукция осуществляется клетками крови и костного мозга. Синтез интерферонов происходит под воздействием антигенной стимуляции, хотя очень незначительная концентрация этих соединений может быть обнаружена в норме в костном мозге, бронхах, различных органах желудочно-кишечного тракта, коже и других. Уровень синтеза интерферонов всегда выше в неделящихся, чем в быстро делящихся клетках.

    Еще в семидесятых годах двадцатого века у людей были идентифицированы 3 основных типа интерферона – ,и. И лишь в 1994 годуMuller et al. сообщили об открытии интерферона. Каждый из них представляет собой семейство, включающее разное количество «членов семьи». Функции отдельных интерферонов чрезвычайно сходны. Установлено, что интерфероны индуцируют синтез новых белков и, в частности, олигонуклеотидов, под влиянием которых происходит активация эндорибонуклеазы, фрагментирующей клеточную и вирусную РНК. Под воздействием интерферонов увеличивается продукция 2/5/-фосфодиэстеразы, которая ингибирует фосфорилирование и тем самым транскрипцию РНК, в результате чего нарушается синтез клеточных белков. Следовательно, в конечном итоге интерфероны приводят к деградации бактериальной или вирусной РНК.

    Важную роль играют интерфероны в иммунном ответе при воздействии инфекционных и неинфекционных агентов. Под их влиянием происходит увеличение на поверхности лимфоцитов, моноцитов и макрофагов иммунологически активных молекул.

    Установлено, что интерфероны оказывают антибактериальное, антивирусное, антипролиферативное и иммуномодулирующее действие. Важная роль отводится интерферонам в борьбе с клетками злокачественного роста.

    Согласно современным данным, воздействие интерферонов на опухолевые клетки многообразно и во многом напоминает влияние на вирусинфицированные клетки. В то же время действие интерферонов на опухолевый рост имеет свои особенности. Высказывается мнение, что интерфероны могут оказывать на клетки злокачественного роста непосредственное цитотоксическое, цитостатическое и антипролиферативное действие. Кроме того, интерфероны усиливают иммунитет хозяина, активируя NK-лимфоциты, моноциты и туморинфильтрирующие лимфоциты. Наконец, под воздействием интерферонов увеличивается экспрессияHLA 1класса на опухолевых клетках, что сопровождается усилением функции CTL.

    Следует отметить, что все клетки, вырабатывающие интерфероны, выделяют их во внеклеточное пространство, в котором они циркулируют и контактируют с различными клетками-мишенями. Эти реакции осуществляются благодаря специфическим рецепторам.

    If представляет собой семейство малогликозилированных или негликозилированных протеинов с молекулярной массой 16-20 кДа. Относится к интерферонам 1 типа, ибо является лейкоцитарным противовирусным протеином. Продуцируется, в основном, активированными моноцитами, макрофагами, В-лимфоцитами, а также гранулоцитами. ВIfвходят три субкласса –a, bи c. Наибольшее физиологическое значение присущеIfa и Ifb. Секреция Ifпод влиянием вируса индуцирует образование интерферонов другими клетками, не контактирующими с возбудителями патологического процесса.

    Ifтормозит продукцию основных провоспалительных цитокинов –IL-1, IL-8, GM-CSF, но стимулирует образованиеIL-1R, являющегося антагонистомIL-1. В то же время под воздействиемIfусиливается синтезIL-10моноцитами и Т-лимфоцитами.

    Основное назначение Ifсводится к активации NК-лимфоцитов, повышению экспрессии HLA1 класса, ингибиции репродукции вирусов и пролиферации опухолевых клеток.

    If относится к 1 типу, образуется фибробластами и эндотелиоцитами. Это гликопротеин, имеющий молекулярную массу 20 кДа. Основное его назначение заключается в активацииNK-лимфоцитов. В литературе он фигурирует под названием лимфотоксина, а активированные им и другими цитокинами (главным образомIL-2)NK-лимфоциты получили наименование ЛАК-клеток (лимфокин активированные клетки).

    Ifсинтезируется в основном Т-лимфоцитами, стимулированными антигенами или митогенами, а также NК-клетками.If относится коIIтипу. Он представляет собой семейство гликопротеинов с молекулярной массой от 16 до 25 кДа. В ранней фазе инфекционного процессаIfпрактически отсутствует или содержится в незначительной концентрации. Образование Ifи его секреция наступает лишь после повторной встречи предварительно сенсибилизированных лимфоцитов с Аг. Этот цитокин не способен непосредственно оказывать влияние на инфекционный агент. Его действие осуществляется, главным образом, через моноциты, макрофаги,NК-лимфоциты, которые он стимулирует. Воздействуя на макрофаги, Ifусиливает их контакт с Ат и повышает способность распознавать Аг. Кроме того, он усиливает влияние Ifи, повышает выработку антител, приводит к образованию и секреции провоспалительных цитокинов, активирует деятельность NК-клеток и CTL. Он также индуцирует экспрессию антигеновHLA 1 и 2 классов на многих клетках, что способствует развитию иммунного ответа. Он может индуцировать экспрессию указанных молекул даже на таких клетках, которые не экспрессируют их конституитивно. Тем самым Ifусиливает презентацию антигенов и способствует их распознаванию Т-лимфоцитами. Кстати, продукция Ifначинается лишь после взаимодействия иммуногенной формы Аг с собственными молекулами гистосовместимости 1 и 2 классов.

    В отдельных случаях, когда Ifсекретируется на ранних этапах патологического процесса NК-лимфоцитами, он принимает непосредственное участие в обеспечении адгезии лимфоцитов к эндотелиальным клеткам в посткапиллярных венах. Этот эффект обусловлен экспрессией адгезивных молекул (ICAM-1), что приводит к повышенной адгезии лимфоцитов, экспрессирующих соответствующий лиганд, представляющий собой интегринLFA-1.Ifспособен резко повышать проницаемость сосудов для макромолекул, а в комплексе сTNF– индуцировать образование и секрецию хемокинов, обеспечивающих хемотаксис лейкоцитов.

    Стимулятором синтеза Ifлимфоцитами является IL-2. NК-клетки начинают продуцировать Ifлишь после взаимодействия с раковыми или зараженными вирусами клетками и этот эффект усиливаетсяIL-12.

    If был впервые выделен из трофобластов жвачных животных. Он, как иIfи If, относится к 1 типу. Свойства его пока мало изучены.

    Фактор, ингибирующий миграцию макрофагов (MIF) – синтезируется и секретируется активированными лимфоцитами, моноцитами, макрофагами, тучными клетками, базофилами и эозинофилами. Оба типа Т-хелперов (Тh2 и Тh3) способны высвобождать базальный уровень МIF. Продукцияэтого цитокинаосуществляется в ответ на индукцию бактериальным липополисахаридом. В то же время в отличие от других цитокиновMIFможет выделяться нестимулированными макрофагами.

    Следует заметить, что MIFобладает уникальными свойствами, проявляя активность не только цитокина, но и гормона и фермента.

    Под его влиянием тормозится миграция фагоцитирующих клеток, благодаря чему они скапливаются в очаге воспаления или инфекции. Безусловно, эта реакция носит защитный характер, ибо способствует ликвидации патологического процесса за счет усиления фагоцитоза и борьбы с возбудителями заболевания. MIF способен усиливать киллинг внутриклеточных паразитов, прайминг нейтрофилов, регулировать Т-клеточный рост, ингибировать активностьNK-лимфоцитов и регулировать синтезIgE.Кроме того, MIF принимает участие в качестве эффекторной молекулы в развитии клеточного иммунного ответа, а также реакции гиперчувствительности замедленного типа.

    Вместе с тем, MIF совместно с TNFи Ifактивирует макрофаги в ответ на инфекцию или повреждение тканей, а также участвует в каскаде реакций эндотоксического шока. Высказывается предположение, что эти эффекты могут быть обусловлены контролем уровня TNF.

    Установлено, что в физиологических концентрациях глюкокортикоиды увеличивают секрецию MIF макрофагами и Т-лимфоцитами, подавляя в то же время выделение других провоспалительных цитокинов. Не исключено, что MIF выполняет функцию контррегулятора иммунного ответа по отношению к глюкокортикоидам, являющимся сильнейшими ингибиторами воспаления и клеточного иммунного ответа. Установлена способность МIF противостоять ингибирующему действию глюкокортикоидов на секрецию макрофагами других провоспалительных цитокинов – IL-1, IL-1, IL-6, IL-8, TNF.Повышение уровня МIF сопровождается контролем за иммуносупрессирующими эффектами эндогенных или экзогенных (используемых для терапии) глюкокортикоидов.

    Каталитическая активность MIFдовольно широка, однако пока не ясно, какую роль она играет в условиях нормы и патологии.

    Что касается других провоспалительных цитокинов, то они не играют столь существенной роли в развитии иммунного ответа, а потому для врача не представляют особого интереса.

    Подводя итоги, мы хотим обратить внимание на следующие важнейшие функции провоспалительных цитокинов в развитии целого ряда симптомов при воспалении.

    1. Повышение температуры тела при инфекционных процессах полностью зависит от действия на ЦНС IL-1 и IL-6.

    2. Синтез белков острой фазы (БОВ) связан с действием на гепатоциты IL-1 и IL-6. БОВ обладают выраженной способностью опсонизировать внедрившиеся в организм бактерии и тем самым резко усиливают фагоцитарную активность нейтрофилов, моноцитов и макрофагов.

    3. Развитие классических признаков воспаления целиком связано с действием TNF.

    4. Лейкоцитоз в периферической крови, являясь характерной чертой воспаления и инфекционного процесса,обеспечивается GM-CSF, G-CSF и M-CSF, так как они усиливают пролиферацию и дифференцировку клеток предшественников костного мозга и ускоряют созревание гранулоцитов с 7 до 1,5 дней.

    5. Миграция нейтрофилов и моноцитов в очаг воспаления зависит от хемокинов (IL-8, IL-16), а также от GM-CSF, усиливающих двигательную активность фагоцитов (Р.М. Хаитов, Б.В. Пинегин).

    studfile.net


    Смотрите также