Арифметическая прогрессия что это такое


Арифметическая прогрессия — Википедия

Материал из Википедии — свободной энциклопедии

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

a1, a1+d, a1+2d, …, a1+(n−1)d, …{\displaystyle a_{1},\ a_{1}+d,\ a_{1}+2d,\ \ldots ,\ a_{1}+(n-1)d,\ \ldots },

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d{\displaystyle d} (шага, или разности прогрессии):

an=an−1+d{\displaystyle a_{n}=a_{n-1}+d\quad }

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

an=a1+(n−1)d{\displaystyle a_{n}=a_{1}+(n-1)d}

Арифметическая прогрессия является монотонной последовательностью. При d>0{\displaystyle d>0} она является возрастающей, а при d<0{\displaystyle d<0} — убывающей. Если d=0{\displaystyle d=0}, то последовательность будет стационарной. Эти утверждения следуют из соотношения an+1−an=d{\displaystyle a_{n+1}-a_{n}=d} для членов арифметической прогрессии.

Общий член арифметической прогрессии[править | править код]

Член арифметической прогрессии с номером n{\displaystyle n} может быть найден по формуле

an=a1+(n−1)d{\displaystyle a_{n}=a_{1}+(n-1)d}
где a1{\displaystyle a_{1}} — первый член прогрессии, d{\displaystyle d} — её разность.

Характеристическое свойство арифметической прогрессии[править | править код]

Последовательность a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } есть арифметическая прогрессия ⇔{\displaystyle \Leftrightarrow } для любого её элемента выполняется условие an=an−1+an+12,n⩾2{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}},n\geqslant 2}.

Доказательство
Необходимость:

Поскольку a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } — арифметическая прогрессия, то для n⩾2{\displaystyle n\geqslant 2} выполняются соотношения:

an=an−1+d{\displaystyle a_{n}=a_{n-1}+d}

an=an+1−d{\displaystyle a_{n}=a_{n+1}-d}.

Сложив эти равенства и разделив обе части на 2, получим an=an−1+an+12{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется an=an−1+an+12{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}}}. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду an+1−an=an−an−1{\displaystyle a_{n+1}-a_{n}=a_{n}-a_{n-1}}. Поскольку соотношения верны при всех n⩾2{\displaystyle n\geqslant 2}, с помощью математической индукции покажем, что a2−a1=a3−a2=…=an−an−1=an+1−an{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}}.

База индукции (n=2){\displaystyle (n=2)} :

a2−a1=a3−a2{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}} — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k{\displaystyle n=k}, то есть a2−a1=a3−a2=…=ak−ak−1=ak+1−ak{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}}. Докажем истинность утверждения при n=k+1{\displaystyle n=k+1}:

ak+1−ak=ak+2−ak+1{\displaystyle a_{k+1}-a_{k}=a_{k+2}-a_{k+1}}

Но по предположению индукции следует, что a2−a1=a3−a2=…=ak−ak−1=ak+1−ak{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}}. Получаем, что a2−a1=a3−a2=…=ak−ak−1=ak+1−ak=ak+2−ak+1{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}=a_{k+2}-a_{k+1}}

Итак, утверждение верно и при n=k+1{\displaystyle n=k+1}. Это значит, что an=an−1+an+12,n⩾2⇒a2−a1=a3−a2=…=an−an−1=an+1−an{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}},n\geqslant 2\Rightarrow a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}}.

Обозначим эти разности через d{\displaystyle d}. Итак, a2−a1=a3−a2=…=an−an−1=an+1−an=d{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}=d}, а отсюда имеем an+1=an+d{\displaystyle a_{n+1}=a_{n}+d} для n∈N{\displaystyle n\in \mathbb {N} }. Поскольку для членов последовательности a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } выполняется соотношение an+1=an+d{\displaystyle a_{n+1}=a_{n}+d}, то это есть арифметическая прогрессия.

Сумма первых n{\displaystyle n} членов арифметической прогрессии[править | править код]

Сумма первых n{\displaystyle n} членов арифметической прогрессии Sn=∑i=1nai=a1+a2+…+an{\displaystyle S_{n}=\sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+\ldots +a_{n}} может быть найдена по формулам

Sn=a1+an2⋅n{\displaystyle S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot n} , где a1{\displaystyle a_{1}} — первый член прогрессии, an{\displaystyle a_{n}} — член с номером n{\displaystyle n}, n{\displaystyle n} — количество суммируемых членов.
Sn=a1+an2⋅(an−a1a2−a1+1){\displaystyle S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot ({\frac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a1{\displaystyle a_{1}} — первый член прогрессии, a2{\displaystyle a_{2}} — второй член прогрессии ,an{\displaystyle ,a_{n}} — член с номером n{\displaystyle n}.
Sn=2a1+d(n−1)2⋅n{\displaystyle S_{n}={\frac {2a_{1}+d(n-1)}{2}}\cdot n} , где a1{\displaystyle a_{1}} — первый член прогрессии, d{\displaystyle d} — разность прогрессии, n{\displaystyle n} — количество суммируемых членов.
Доказательство
Запишем сумму двумя способами:

Sn=a1+a2+a3+…+an−2+an−1+an{\displaystyle S_{n}=a_{1}+a_{2}+a_{3}+\ldots +a_{n-2}+a_{n-1}+a_{n}}

Sn=an+an−1+an−2+…+a3+a2+a1{\displaystyle S_{n}=a_{n}+a_{n-1}+a_{n-2}+\ldots +a_{3}+a_{2}+a_{1}} — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2Sn=(a1+an)+(a2+an−1)+(a3+an−2)+…+(an−2+a3)+(an−1+a2)+(an+a1){\displaystyle 2S_{n}=(a_{1}+a_{n})+(a_{2}+a_{n-1})+(a_{3}+a_{n-2})+\ldots +(a_{n-2}+a_{3})+(a_{n-1}+a_{2})+(a_{n}+a_{1})}

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде ai+an−i+1,i=1,2,…,n{\displaystyle a_{i}+a_{n-i+1},i=1,2,\ldots ,n}. Воспользуемся формулой общего члена арифметической прогрессии:

ai+an−i+1=a1+(i−1)d+a1+(n−i+1−1)d=2a1+(n−1)d,i=1,2,…,n{\displaystyle a_{i}+a_{n-i+1}=a_{1}+(i-1)d+a_{1}+(n-i+1-1)d=2a_{1}+(n-1)d,i=1,2,\ldots ,n}

Получили, что каждое слагаемое не зависит от i{\displaystyle i} и равно 2a1+(n−1)d{\displaystyle 2a_{1}+(n-1)d}. В частности, a1+an=2a1+(n−1)d{\displaystyle a_{1}+a_{n}=2a_{1}+(n-1)d}. Поскольку таких слагаемых n{\displaystyle n}, то

2Sn=(a1+an)⋅n⇒Sn=a1+an2⋅n{\displaystyle 2S_{n}=(a_{1}+a_{n})\cdot n\Rightarrow S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot n}

Третья формула для суммы получается подстановкой 2a1+(n−1)d{\displaystyle 2a_{1}+(n-1)d} вместо a1+an{\displaystyle a_{1}+a_{n}}. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a1+an{\displaystyle a_{1}+a_{n}} в первой формуле для суммы можно взять любое из других слагаемых ai+an−i+1,i=2,3,…,n{\displaystyle a_{i}+a_{n-i+1},i=2,3,\ldots ,n}, так как они все равны между собой.

Сходимость арифметической прогрессии[править | править код]

Арифметическая прогрессия a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } расходится при d≠0{\displaystyle d\neq 0} и сходится при d=0{\displaystyle d=0}. Причём

limn→∞an={+∞, d>0−∞, d<0a1, d=0{\displaystyle \lim _{n\rightarrow \infty }a_{n}=\left\{{\begin{matrix}+\infty ,\ d>0\\-\infty ,\ d<0\\a_{1},\ d=0\end{matrix}}\right.}
Доказательство
Записав выражение для общего члена и исследуя предел limn→∞(a1+(n−1)d){\displaystyle \lim _{n\rightarrow \infty }(a_{1}+(n-1)d)}, получаем искомый результат.

Связь между арифметической и геометрической прогрессиями[править | править код]

Пусть a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } — арифметическая прогрессия с разностью d{\displaystyle d} и число a>0{\displaystyle a>0}. Тогда последовательность вида aa1,aa2,aa3,…{\displaystyle a^{a_{1}},a^{a_{2}},a^{a_{3}},\ldots } есть геометрическая прогрессия со знаменателем ad{\displaystyle a^{d}}.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:
aan−1⋅aan+1=aan,n⩾2{\displaystyle {\sqrt {a^{a_{n-1}}\cdot a^{a_{n+1}}}}=a^{a_{n}},n\geqslant 2}

Воспользуемся выражением для общего члена арифметической прогрессии:

aan−1⋅aan+1=aa1+(n−2)d⋅aa1+nd=a2a1+2(n−1)d=(aa1+(n−1)d)2=aa1+(n−1)d=aan,n⩾2{\displaystyle {\sqrt {a^{a_{n-1}}\cdot a^{a_{n+1}}}}={\sqrt {a^{a_{1}+(n-2)d}\cdot a^{a_{1}+nd}}}={\sqrt {a^{2a_{1}+2(n-1)d}}}={\sqrt {(a^{a_{1}+(n-1)d})^{2}}}=a^{a_{1}+(n-1)d}=a^{a_{n}},n\geqslant 2}

Итак, поскольку характеристическое свойство выполняется, то aa1,aa2,aa3,…{\displaystyle a^{a_{1}},a^{a_{2}},a^{a_{3}},\ldots } — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=aa2aa1=aa1+daa1=ad{\displaystyle q={\frac {a^{a_{2}}}{a^{a_{1}}}}={\frac {a^{a_{1}+d}}{a^{a_{1}}}}=a^{d}}.

Арифметические прогрессии высших порядков[править | править код]

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если [ai]1n{\displaystyle \left[a_{i}\right]_{1}^{n}} — арифметическая прогрессия порядка m{\displaystyle m}, то существует многочлен Pm(i)=cmim+...+c1i+c0{\displaystyle P_{m}(i)=c_{m}i^{m}+...+c_{1}i+c_{0}}, такой, что для всех i∈{1,....n}{\displaystyle i\in \left\{1,....n\right\}}

ru.wikipedia.org

Конспект "Арифметическая прогрессия" - УчительPRO

Арифметическая прогрессия

Код ОГЭ по математике: 4.2.1. Арифметическая прогрессия. Формула общего члена арифметической прогрессии. 4.2.2. Формула суммы первых нескольких членов арифметической прогрессии



Определения и обозначения

Определение. Арифметической прогрессией называют последовательность, каждый член которой, начиная со второго, получается прибавлением к предыдущему члену одного и того же числа.

В арифметической прогрессии разность между любыми двумя соседними членами одна и та же. Эту разность называют разностью арифметической прогрессии и обозначают буквой d. Правило, по которому образуются члены арифметической прогрессии, можно записать в виде рекуррентной формулы:

аn+1an = d.    Или иначе: an+1 = an + d.

Пример 1. В арифметической прогрессии 1; 3; 5; 7; 9; 11; … разность положительна: d = 3 – 1 = 2. В этой последовательности каждый следующий член больше предыдущего; такую последовательность называют возрастающей.

Пример 2. В арифметической прогрессии 100; 90; 80; 70; 60; … разность отрицательна: d = 90 – 100 = –10. Каждый следующий член этой последовательности меньше предыдущего, и поэтому последовательность называют убывающей.

Пример 3. Последовательность 5; 5; 5; 5; 5; … , все члены которой равны между собой, тоже является арифметической прогрессией, так как разность между любыми двумя её членами одна и та же: d = 5 – 5 = 0.

Свойство арифметической прогрессии. Любой член арифметической прогрессии, начиная со второго, равен среднему арифметическому предыдущего и последующего членов:

 

Формулы n–го члена арифметической прогрессии

Формула nго члена арифметической прогрессии (аn), первый член которой равен а1 и разность равна d:

аn = а1 + d(n – 1).

Формула содержит четыре переменные. Если известны значения трёх из них, то можно вычислить и значение четвёртой. Убедитесь в этом, решив следующие четыре задачи (в каждом случае укажите, какие переменные известны, и получите ответ):

  1. В арифметической прогрессии а1 = 2 и d = 3. Найдите а65. (Ответ: 194.)
  2. В арифметической прогрессии а86 = 100 и d = 4. Найдите а1. (Ответ: 440.)
  3. В арифметической прогрессии а1 = 65 и а21 = 55. Найдите d. (Ответ: 6.)
  4. В арифметической прогрессии а1 = 1 и d=4. Найдите номер члена, равного 397. (Ответ: 100.)

Пример 4. Дана арифметическая прогрессия: 1,5; 4,5; 7,5; 10,5; … . Начиная с какого номера члены этой прогрессии превосходят 1000?

В данной прогрессии а1 = 1,5 и d = 4,5 1,5 = 3. Составим формулу n–го члена: аn = 1,5 + 3(n 1), т.е. аn = 3n 1,5.

Найдём значения n, при которых выполняется условие аn > 1000. Для этого решим неравенство 3n 1,5 > 1000; n > 333. Таким образом, члены данной прогрессии превосходят 1000, начиная с члена, номер которого равен 334. (Для самопроверки можно вычислить а334: имеем a334 = 3 • 334 1,5 = 1000,5).

Пример 5. В арифметической прогрессии a15 = 40, а20 = 5. Найдём a30.

Способ 1. Выразив а15 и a20 через а1 и d, составим систему уравнений:

Решив её, найдём, что а1 = 138, d = –7. (Получите этот результат самостоятельно.) Воспользовавшись формулой n–го члена, найдём a30, a именно: а30 = 138 – 7 • 29 = –65.

Способ 2. Выразим а20 через а15 и d: a20 = а15 + 5d. Подставив значения а20 и а15, получим: 5 = 40 + 5d, откуда d = –7. Теперь найдём а30. Это можно сделать, например, так:
а30 = а20 + 10d = 5 – 7 • 10 = –65.

При решении задачи вторым способом мы воспользовались приёмом, основанным на следующим утверждении: если последовательность (аn) арифметическая прогрессия, то для любых натуральных n и m верно равенство:

аn = аm + (n – m)d.

Если вы эту формулу забудете, то в каждом конкретном случае можно выразить один член прогрессии через другой, выполнив несложные преобразования. Например, выразим а20 через а5:
а20 = а1 + 19d = (a1 + 4d) + 15d = а5 + 15d.

 

Изображение членов арифметической прогрессии
точками на координатной плоскости

Члены числовой последовательности можно изображать точками на координатной плоскости. Для этого по горизонтальной оси откладывают номер члена, a по вертикальной соответствующий член последовательности.

Если последовательность арифметическая прогрессия, то точки, изображающие её члены, лежат на одной прямой. Дело в том, что зависимость nго члена арифметической прогрессии от номера члена n является линейной. В самом деле:

an = a1 + d(n – 1) = dn + (a1 – 1).

Например, если в арифметической прогрессии а1 = 1 и d = 3, то аn = 1 + 3(n – 1), т.е. аn = 3n – 2. Значит, точки, изображающие члены этой прогрессии, лежат на прямой y = 3x – 2 (см. рис.).

Изменение членов арифметической прогрессии происходит равномерно: с каждым шагом по горизонтальной оси изображающие их точки поднимаются или опускаются на одно и то же число единиц вдоль вертикальной оси.

 

Формулы суммы первых n членов арифметической прогрессии

Если известны первый и последний из суммируемых членов, то удобно пользоваться формулой

Пример 6. Найдём сумму всех натуральных чисел от 1 до 1000.

Слагаемые в сумме 1 + 2 + 3 + … + 1000 образуют арифметическую прогрессию. Подставив в формулу суммы а1 = 1, аn = 1000, n = 1000, получим:

Формулу суммы первых n членов арифметической прогрессии можно записать в другом виде, выразив Sn через а1, d и n:

Пример 7. Найдём сумму всех двузначных чисел, кратных 3.

Последовательность 12; 15; 18; … ; 99 является арифметической прогрессией, в которой а1 = 12, аn = 99, d= 3. Найдём номер последнего члена. Подставив в формулу аn = а1 + d(n – 1) указанные значения, получим уравнение 99 = 12 + 3(n 1). Решив его, найдём, что n = 30. Теперь можно вычислить искомую сумму:

 


Это конспект по математике на тему «Арифметическая прогрессия». Выберите дальнейшие действия:

uchitel.pro

Последовательности. Арифметическая и геометрическая прогрессии

Математика создает инструменты, которые помогают описывать и структурировать различные вещи, которые нас окружают. Одним из таких инструментов является числовая последовательность.

Само слово «последовательность» мы часто используем в обычной жизни. Чем последовательность отличается от произвольного набора? Тем, что в последовательности важен порядок ее элементов. Например, мы говорим про алгоритм, т. е. про последовательность действий, когда нам важно, что нужно сделать первым, что вторым и т. д. Так, мы сначала надеваем рубашку, потом – пиджак. А вот разницы, какой носок сначала надеть – левый или правый – для нас обычно нет. График дежурств по школе определяет последовательность, в которой классы должны убирать и следить за порядком в школе (см. рис. 1).

Рис. 1. График дежурств по школе определяет последовательность

А вот алфавит – это набор букв. Да, мы договорились об определенном порядке:  – первая буква алфавита,  – вторая и т. д., так нам удобно его запоминать и работать с ним. Но, по сути, никакого значения этот порядок не имеет. С таким же успехом можно было считать первой буквой алфавита букву  или .

Что же такое последовательность как математический инструмент? Обратите внимание, что поскольку для последовательности важен порядок элементов, то для их нумерации можно использовать числа –  и т. д. Например,  класс дежурит каждую пятую неделю: в первую, шестую и т. д. (см. рис. 2).

Рис. 2. Расписание дежурств

Алгоритм можно расписать по пунктам:

  1. надеть рубашку;
  2. надеть пиджак;

Мы будем изучать числовые последовательности, т. е. последовательности, элементами которых являются числа.

Номер телефона можно считать числовой последовательностью: . Пин-код кредитной карты или телефона тоже примеры числовых последовательностей: .

Это действительно последовательности, а не наборы чисел – если поменять местами цифры в номере телефона, то получится совершенно другой номер. А введя нужные цифры пин-кода, но в неправильном порядке, вы не разблокируете смартфон.

Приведенные выше примеры числовых последовательностей – это конечные последовательности, ведь они содержат конечное количество элементов. Могут быть и бесконечные последовательности. Ряд натуральных чисел – это простейший пример бесконечной числовой последовательности:

Поскольку одна из функций натуральных чисел – это задание порядка, то логично, что именно натуральные числа мы будем использовать для нумерации других последовательностей.

Например, последовательность простых чисел:

Первое простое число – , второе простое число – , третье –  и т. д. Для удобства записи принято обозначать элементы последовательности латинскими буквами, а их номер указывать индексом. Например, в последовательности простых чисел :

При этом элементы числовой последовательности принято называть членами последовательности.

А как можно задать числовую последовательность?  Если последовательность конечная, то можно просто перечислить все ее члены. Можно описать свойства элементов последовательности. Например, «простые числа в порядке возрастания» или «последовательность домов нечетной стороны проспекта Гагарина». Есть ли еще какие-то способы задания последовательности?

Мы сказали, что члены последовательности можно нумеровать натуральными числами. Посмотрим на это с другой стороны: мы ставим в соответствие натуральному числу некоторое число:

Знакомо? Да это же определение функции! Только аргументом ее могут быть не любые действительные числа, а только натуральные. Т. е. последовательность можно задать как функцию натурального аргумента. Сравните записи:

1.   – значение функции  при аргументе :

2.  – член последовательности  с номером :

На самом деле, мы можем записать даже так:

Тогда мы увидим полное сходство с обозначением функции. Но принято номер записывать не в скобках, а нижним индексом. Поэтому дальше будем придерживаться общепринятого обозначения:

Рассмотрим последовательность, которая задана следующим образом:

Такой способ задания последовательности, с помощью формулы, называют аналитическим. Подставляя вместо  натуральные числа, мы получим члены этой последовательности:

Получим последовательность четных чисел. Обратите внимание: последовательность натуральных чисел содержит последовательность четных чисел:

Т. е. кажется, что натуральных чисел больше. Но мы же только что показали, что каждому натуральному числу  мы можем поставить в соответствие четное число . Значит, их должно быть одинаковое количество! В чем же подвох?

Дело в том, что привычный нам инструмент «количество» имеет свои ограничения. Он помогает сравнивать множества с конечным набором элементов. А для бесконечных множеств уже не подходит.

Что же делать с бесконечными множествами? Вспомним, что количество мы использовали для сравнения, сопоставления элементов конечных множеств. Во множестве  больше элементов, чем во множестве , если мы не можем найти пару для элемента  из  (см. рис. 3).

Рис. 3. Во множестве  больше элементов, чем во множестве

Этот инструмент можно расширить и на бесконечные множества – если между элементами множеств можно установить взаимно однозначное соответствие, то они в каком-то смысле эквивалентны по количеству элементов. Но, т. к. термин «количество» мы оставили для конечных множеств, то для бесконечных множеств этот инструмент расширили и назвали мощность. Подробнее об этом ниже.


 

Мощность множества

Итак, у двух конечных множеств одинаковое количество элементов, если между их элементами можно установить взаимно однозначное соответствие. Например,  пальцев и  машин (см. рис. 4) (в детстве мы именно так и учились считать – загибали палец для каждого следующего элемента множества).

Рис. 4. У двух конечных множеств одинаковое количество элементов, если между их элементами можно установить взаимно однозначное соответствие:  пальцев –  машин

А как сравнить количество капель в озере и количество деревьев в лесу? Понятно, что в нашем понимании оба множества можно считать бесконечными. Интуитивно мы понимаем, что количество капель в озере больше (потому что само понятие капли, в отличие от дерева, гораздо более «размытое»). Но когда мы говорим о математическом инструменте, необходимо дать строгое определение.

Обобщим идею сопоставления элементов для бесконечных множеств. Говорят, что если между элементами двух множеств можно установить взаимно однозначное соответствие, то их мощности равны (см. рис. 5).

Рис. 5. Множества с равной мощностью

Для конечных множеств мощность – это просто количество элементов ( – мощность множества):

Для бесконечных множеств за эталон берется натуральный числовой ряд:

Все множества, элементы которых можно занумеровать натуральными числами, называются счетными. Если же между элементами бесконечного множества и натуральными числами нельзя установить взаимно однозначное соответствие, то такие множества называются несчетными (см. рис. 6).

Рис. 6. Множество действительных чисел – пример несчетного множества

Мы показали, что между всеми натуральными и всеми четными числами можно установить такое соответствие, значит, мощности этих множеств равны. Даже несмотря на то, что натуральных чисел «кажется, больше». Т. е. множество четных чисел тоже счетное.

Интересно, что можно установить взаимно однозначное соответствие между натуральными числами и целыми, т. е. можно пронумеровать все целые числа! Опять же, может показаться, что целых должно быть почти в  раза больше, ведь это все натуральные, столько же обратных, да еще и ноль. Но так сравнивать бесконечные множества не получится. Можно сравнивать их «мощности», и они будут равны.

Покажем это: числу  поставим в соответствие . Далее нумеруем поочередно: положительное, отрицательное, положительное, отрицательное.

Таким образом, мы установим взаимооднозначное соответствие между целыми и натуральными числами, значит, мощности этих множеств равны. И множество целых чисел тоже счетное.

Еще более интересно то, что все рациональные числа также можно пронумеровать! Можете самостоятельно попробовать придумать, как это сделать. Т. е. множества натуральных , целых , рациональных чисел  – счетные. А вот множество действительных чисел  – несчетное. Можно сказать, что действительных чисел в каком-то смысле больше, чем рациональных. Для мощности множества действительных чисел даже ввели специальное название – континуум (от лат. continuum – непрерывное, сплошное).


 

Как мы уже сказали, последовательность можно задать как функцию натурального аргумента. Соответственно, для работы с последовательностями нам пригодятся все те навыки, которые мы приобрели при работе с функциями. Кроме того, характеристики функций можно использовать и для описания последовательностей.

Например, возрастающая последовательность – это последовательность, у которой каждый член больше предыдущего:

И наоборот, убывающая последовательность – это последовательность, у которой каждый член меньше предыдущего:

 

Задание 1. Найти первый отрицательный член последовательности:

Решение.

Член последовательности должен быть отрицательным:

Решаем неравенство:

Переменная  – это номер члена последовательности, т. е. натуральное число. Нужно найти первый отрицательный член последовательности, т. е. его номер должен быть наименьшим натуральным числом, которое больше . Это число , тогда:

Ответ: .

 

Задание 2. Найти номер наименьшего члена последовательности:

Решение.

Чтобы найти наименьшее значение выражения, выделим полный квадрат:

Перепишем последовательность:

Т. к. , то:

Т. е. минимально возможное значение  равно . Но достигается оно при , а  должно быть натуральным числом. Таким образом, член последовательности будет наименьшим при ближайших натуральных значениях :

Проверим:

Получили одинаковые значения, именно они и будут наименьшими.

interneturok.ru

Арифметическая прогрессия | umath.ru

Определение арифметической прогрессии

Определение. Числовая последовательность, каждый член которой получается из предыдущего прибавлением одного и того же числа называется арифметической прогрессией. Число называется разностью арифметической прогрессии.

То есть арифметическая прогрессия определяется рекуррентным соотношением

   

Например, последовательность нечётных натуральных чисел

   

является арифметической прогрессией, так как любой её член отличается от предыдущего на 2.

Общий член арифметической прогрессии задаётся формулой

   

Например, последовательность образует арифметическую прогрессию с разностью и первым членом Поэтому её общий член может быть задан соотношением

   

Пример 1. Найти одиннадцатый член арифметической прогрессии, если её первый член а разность

Решение. По формуле для общего члена арифметической прогрессии имеем

   

Теорема. Последовательность тогда и только тогда является арифметической прогрессией, когда каждый её член, начиная со второго, равен полусумме предыдущего и последующего членов:

   

Доказательство. По определению арифметической прогрессии для всех имеем

   

Отсюда

   

то есть

   

Сумма первых n членов арифметической прогрессии

В качестве примера найдём сумму всех натуральных чисел от 1 до 100, то есть вычислим сумму

   

Решение. Можно сидеть и долго складывать все числа по порядку. Но есть более простой способ. Запишем сумму этих чисел, а под ней — ту же сумму, но в обратной последовательности:

   

Теперь почленно сложим эти суммы:

   

   

Отсюда

По легенде, школьный учитель математики, надеясь надолго занять детей, предложил им сосчитать эту сумму. Среди тех детей был будущий великий математик Карл Гаусс. Юный Гаусс быстро заметил, что попарные суммы членов с противоположных концов равны: и т.д, и уже через несколько минут подошёл к учителю с ответом:

Этим же приёмом удобно воспользоваться и при вычислении суммы первых членов арифметической прогрессии, если заметить, что

   

Действительно,

   

   

Сумма первых n членов арифметической прогресиии

   

равна полусумме первого и n-ного её членов, умноженной на число членов, то есть

   

Доказательство. Запишем сумму сначала в прямом порядке, а затем — в обратном:

   

   

Сложим почленно эти два равенства и воспользуемся тем, что :

   

   

Отсюда находим

   

umath.ru

Определение и свойства арифметической прогрессии, формула ее n-го члена

Тема: Прогрессии

Урок: Определение и свойства арифметической прогрессии, формула n-го члена

Вспомним, что числовая последовательность – частный случай функции, функции, определенной на множестве натуральных чисел. Арифметическая прогрессия – частный случай числовой последовательности.

Рассмотрим примеры, дающие представление об арифметической прогрессии.

1. Задана последовательность чисел:

Закономерность образования данной последовательности: каждый последующий член больше предыдущего на 4 (обозначим это число буквой d), т.е.  Данную последовательность можно задать рекуррентно: . Заметим, что эта последовательность является возрастающей  () .

2. Задана последовательность чисел:  В этой последовательности все числа равны между собой, .

3. Задана последовательность чисел:

Закономерность образования данной последовательности: каждый последующий член меньше предыдущего на 2. Чтобы получить последующий член надо к предыдущему прибавить число (-2), т.е.  Данную последовательность можно задать рекуррентно: . Заметим, что эта последовательность является убывающей () .

Дадим определение  арифметической прогрессии.

Числовая последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и одного и того же числа d, называется арифметической прогрессией, число d называется ее разностью. 

Арифметическая прогрессия обозначается следующим образом:.

Арифметическая прогрессия может быть задана рекуррентно:  

Непосредственно из определения арифметической прогрессии следуют такие свойства:

- если , то арифметическая прогрессия - возрастающая;

- если , то арифметическая прогрессия - убывающая.

Из определения арифметической прогрессии следует истинность равенств: . Тогда

  и т.д. Значит,

Т.е., зная первый член и разность арифметической прогрессии, можно найти любой ее член.

Арифметическую прогрессию считают заданной, если известен ее первый член и разность.

Формулу  называют формулой n-го члена арифметической прогрессии.

Формулу n-го члена арифметической прогрессии можно доказать с помощью метода математической индукции.

Дано: , .

Доказать:  (1)

Доказательство.

Формула (1) верна при n=1. Действительно, .

Предположим, что формула (1) верна при n=k, т.е. .

Докажем, что формула (1) верна и при n=k+1, т.е. .

Из условия  и предположения  получаем:

.

Согласно принципу математической индукции формула (1) верна для любого натурального числа.

Из формулы n-го члена арифметической прогрессии следует, что

. Это означает, что арифметическая прогрессия зависит от n, т.е. является функцией натурального аргумента.

Вывод: арифметическая прогрессия – это линейная функция натурального аргумента , где .

Если , то линейная функция возрастает и арифметическая прогрессия - возрастающая;

если , то линейная функция убывает и  арифметическая прогрессия - убывающая.

Пример 1.

Дано: =.

Найти: формулу n-го члена арифметической прогрессии .

Доказать: - возрастающая.

Дать: геометрическую иллюстрацию.

Решение.

.Тогда , т.е. .

Поскольку , заданная арифметическая прогрессия – возрастающая.

Чтобы дать геометрическую иллюстрацию данной арифметической прогрессии, нужно построить график линейной функции  и отметить точки с абсциссами, равными 1,2,3,4,…(см. Рис. 1).

Рис. 1. График функции

Пример 2.

Дано: =.

Найти: формулу n-го члена арифметической прогрессии .

Дать: геометрическую иллюстрацию.

Решение.

.

Тогда  для любого натурального числа.

Чтобы дать геометрическую иллюстрацию данной арифметической прогрессии, нужно построить график линейной функции  и отметить точки с абсциссами, равными 1,2,3,4,…(см. Рис.  2).

Рис. 2. График функции

Пример 3.

Дано: =.

Найти: формулу n-го члена арифметической прогрессии .

Доказать: - убывающая.

Дать: геометрическую иллюстрацию.

Решение.

.

Тогда , т.е. .

Поскольку , заданная арифметическая прогрессия – убывающая.

Чтобы дать геометрическую иллюстрацию данной арифметической прогрессии, нужно построить график линейной функции  и отметить точки с абсциссами, равными 1,2,3,4,…(см. Рис. 3).

Рис. 3. График функции

Пример 4.

Дано: , .

Найти:

interneturok.ru

Формулы арифметической прогрессии. Формула n числа арифметической прогрессии. Формула для вычисления суммы арифметической прогрессии.

Прогрессия-это последовательность объектов, которые следуют определенному порядку. Арифметическая прогрессия - это последовательность чисел, в которой разница между двумя последовательными числами одинакова.

 

Арифметическая прогрессия представляет собой последовательность чисел, где разница между любыми двумя последовательными числами постоянна.

Другими словами, в арифметической прогрессии, результат одинаков, когда число вычитается из его следующего числа, по всей ее последовательности. Результат, когда число вычитается из его следующего числа, называется  шагом или разностью арифметической прогрессии.

Пример арифметической прогресии: \(1,3,5,7,9,11\), к каждому последующему числу мы прибавляем \(2\). 

Для того чтобы решать задачи по арифметической прогрессии, важно понимать формулировку  символов.

Обозначения в формулах арифметической прогрессии:

  • Первый член в арифметической прогрессии \(a_1\):

    \(1,3,5,7,9\)   \(1 -a_1\) 

  • Какой-либо член в арифметической прогрессии \(a_n\) :

​          \(1,3,5,7,9\)  например \(a_n-3\), также это может быть любое число из прогрессии.

  •  Следующий член \(a_{n+1}\):

     \(1,3,5,7,9\)    \(3-n,\; \; \; 5-a_{n+1}\).

  • Предыдущий член арифметической прогрессии \(a_{n-1}\)

      \(1,3,5,7,9\)    \(5-n,\; \; \; 3-a_{n-1}\).

  • Сумма членов арифметической прогрессии \(S_n\):

      \(1,3,5,7,9\)   \(S_n=1+3+5+7+9=25\).

 

  • Шаг арифметической прогрессии \(d\):

       \(1,3,5,7,9\)    \(3-1=5-3=7-5=9-7=2(d)\)

  • Номер члена арифметической прогрессии \(n\):

      \(1,3,5,7,9\)    \(1\)–первый член \((n=1)\); \(3-\)второй член \((n=2)\); третий член\(-5\) \((n=3)\).

Формулы

 

Формула для нахождения \(a_n\) , если нам известно \(a_1\)и \(d\):

\(a_n=a_1+d(n-1)\)

Формула для нахождения \(a_{n+1}\) , если нам известно \(a_{n}\)  и \(d\), также мы можем выразить любое слагаемое:

 

\(a_{n+1}=a_n+d\)

Предыдущий член арифметической прогрессии, если мы знаем \(a_n\)  и \(d\):

 

\(a_{n-1}=a_n-d\)



Формула если нам известно \(a_{n+1}\)  , \(a_{n-1}\), \(n\):

\(a_{n}=\frac{a_{n-1}+a_{n+1}}{2}\), где \(n>1\)

 



Формула нахождения суммы арифметической прогрессии, если мы знаем \(a_1\), \(a_n,n\):

 

\( S_n=\frac{(a_1+a_n)*n}{2}\)

 

Формула нахождения суммы арифметической прогрессии, если мы знаем \(a_1,d,n\):

\(S_n=\frac{2a_1+d(n-1)n}{2}\)

 

Также не забываем, что мы можем выразить неизвестную нам искомую величину, в любой вышеперечисленной формуле.

 

 

Больше уроков и заданий по математике вместе с преподавателями нашей онлайн-школы "Альфа". Запишитесь на пробное занятие уже сейчас!

Запишитесь на бесплатное тестирование знаний!

myalfaschool.ru

Что такое арифметическая прогрессия? Основные понятия.

        Арифметическая прогрессия – это очень и очень простое понятие. И это отнюдь не пустые слова с сомнительной целью утешить, успокоить и приободрить слабо подготовленного ученика. Арифметическая прогрессия – это и вправду просто! Всё-таки сомневаетесь? Напрасно! Чуть ниже сами убедитесь. Если рискнёте и… почитаете.)

        В этом небольшом уроке вы:

        а) прочувствуете и поймёте смысл арифметической прогрессии;

        б) ознакомитесь и разберётесь с базовыми терминами и обозначениями, относящимися к арифметической прогрессии;

        в) научитесь решать простенькие задачки по арифметической прогрессии.

        Ну что, трогаемся в путь?)

        Наше знакомство с прогрессиями (и арифметической – в том числе) мы начнём… нет, не со строгого определения арифметической прогрессии! А начнём мы с такого ключевого понятия, как последовательность.

 

Числовые последовательности, знакомство.

        В житейском плане слово «последовательность» вопросов, как правило, ни у кого не вызывает. Это длинное слово всего лишь означает, что что-то следует за чем-то. Например, последовательность действий, последовательность событий, последовательность дней недели, времён года и так далее.

        Или когда кто-то следует за кем-то. Например, последовательность людей в очереди. Или последовательность коров на тропе к водопою.)

        Из чего состоит любая последовательность? Тут тоже всё логично. Если идёт речь о последовательности дней календаря, то из дней, если об очереди покупателей на кассе, то – из покупателей. И так далее.)

        Но… математика – наука строгая. По законам природы устроена. И работает со всеми объектами сразу. Поэтому ей должно быть без разницы, что (или кто) под этими объектами скрывается – дни, покупатели, спортсмены, коровы, свиньи… Для неё всё едино: последовательность – и всё тут.) Как можно одним словом описать любой объект, из которого состоит любая последовательность? Очень просто: член последовательности! И всё.) Кратко и точно!

        Под ёмким словом «член» скрываются все объекты всех последовательностей махом – и дни, и месяцы, и покупатели, и коровы, и гуси – всё что угодно! Вот из каких объектов конкретная последовательность состоит, те объекты и являются её членами.

        Например, если идёт речь о последовательности календарных месяцев, то январь – член этой последовательности. И июнь – член. И ноябрь – тоже член, да.)

        Математика, как правило, работает с числовыми последовательностями. Что это за зверь? Всё просто, как в сказке. Это последовательность, членами которой являются числа. Совершенно любые! Целые, дробные, отрицательные, иррациональные – какие угодно!

        Например, последовательность натуральных чётных чисел:

        2, 4, 6, 8, 10, 12, 14, 16, …

       

        Или последовательность цифр в десятичной записи числа "пи":

        3, 1, 4, 1, 5, 9, 2, 6, …

       

        И так далее. Насочинять и понаписать можно всё что угодно, даже вообще безо всякой логики. Что-нибудь типа:

        -2; 0; -0,12; 33; 7; -1,2; …

        Как вы видите, в некоторых последовательностях имеется какая-то закономерность, а в некоторых – нет. Всё зависит от моей (или вашей) фантазии.)

        Последовательности (в том числе и числовые, да) бывают конечные и бесконечные. Вышеприведённые примеры – это примеры бесконечных числовых последовательностей. С неограниченным количеством членов.

        А вот последовательность, скажем, месяцев в году – конечна. Ибо количество членов в ней, как можно догадаться, равно 12. То есть, конечному числу.

        Или, например, последовательность натуральных двузначных чисел, делящихся на три:

        12, 15, 18, 21, …, 99.

        Эта последовательность – тоже конечна, да.) Ибо первый член этой последовательности – это число 12, а последний член – это число 99. А вот дальше идут уже трёхзначные числа…

        Приводя примеры самых разных последовательностей, я периодически употреблял слова: «первый член», «последний член», «количество членов»… Не задумывались, почему? Ответ прост: каждый член последовательности (любой!) стоит на своём месте! Всегда. Есть первый член, есть десятый, есть тридцать пятый – и так далее… Нумерация членов – строго по порядку! Без пропусков. Если же какие-то члены переставить местами (хотя бы два), то получится, вообще говоря, уже другая последовательность. Со своими правилами и порядками, да…

        Одним словом, любая числовая последовательность – это упорядоченный (или занумерованный) набор чисел. И всё.

        Понятие последовательности – более широкое, нежели пока малоизвестное нам понятие прогрессии (неважно, арифметической или геометрической). Ибо каждая прогрессия – это последовательность чисел, но не каждая последовательность чисел – это прогрессия. Как говорится, всякая селёдка – рыба, но не всякая рыба – селёдка.)

        Более подробно и широко свойства и поведение самых разных (и, чего скрывать, порой очень интересных и необычных) числовых последовательностей изучается уже в ВУЗе, в курсе матанализа. В школе же изучаются лишь две самые простые их разновидности. Это, как вы уже, наверное, догадались, арифметическая и геометрическая прогрессии.

        Арифметическая прогрессия попроще будет. Так что именно с неё и начнём.

 

Что такое арифметическая прогрессия? Понятие арифметической прогрессии.

        Начнём наше знакомство, как обычно, с самого элементарного и примитивного. Для начала я запишу незаконченную последовательность чисел:

        1, 2, 3, 4, 5, …

        Сможете назвать, какие числа пойдут дальше, вслед за пятёркой? Любой э-э-э-э… в общем, даже человек, далёкий от математики, догадается, что дальше пойдут числа 6, 7, 8 и так далее.)

        Что ж, ладно. Усложняю задачу. Даю незаконченную последовательность чисел:

        1, 4, 7, 10, 13, …

        Сможете уловить закономерность, продлить последовательность и назвать девятый её член?

        Если вы сообразили, что это число 25, то примите мои поздравления! Ибо это означает, что вы не только прочувствовали ключевые моменты арифметической прогрессии, но и с блеском употребили их в дело! Если же не сообразили и не прочувствовали, то… читаем дальше.

        А теперь переведём ключевые моменты из ощущений в математику.

 

        Ключевой момент №1

        Арифметическая прогрессия имеет дело с последовательностями чисел. Собственно, именно это больше всего и смущает поначалу. Ибо непривычно, да… Мы же с вами привыкли уравнения с неравенствами решать, графики строить… А тут – продлить последовательность. Найти член последовательности…

        Ничего страшного. Просто последовательности (и прогрессии тоже) – это первое знакомство с новым разделом математики. Раздел называется «Ряды» и работает именно с последовательностями, с рядами чисел и даже выражений. Так что привыкаем.)

 

        Ключевой момент №2

        В любой арифметической прогрессии каждый её член отличается от предыдущего на одну и ту же величину. Всегда!

        В первом примере эта величина – единичка. Какой член последовательности ни возьми, он больше предыдущего на единичку.

        Во втором примере эта величина – тройка: каждый член больше предыдущего на тройку.

        Собственно, именно этот момент и даёт нам возможность уловить закономерность и рассчитать все последующие числа.)

 

        Ключевой момент №3

        А вот этот момент не сразу бросается в глаза, да… Но он не менее важен. А именно: каждый член арифметической прогрессии стоит на своём месте. Как и в любой числовой последовательности, да. Есть первый член, есть пятый, есть сорок седьмой, и т.д. Если хотя бы два члена в последовательности переставить местами, то закономерность исчезнет. Вместе с ней, естественно, исчезнет и арифметическая прогрессия. Останется просто последовательность чисел.

        Вот и всё. Вот и вся суть арифметической прогрессии.

 

Базовые термины и обозначения.

        А вот теперь, вооружившись самыми начальными знаниями о последовательностях вообще и о ключевых моментах арифметической прогрессии в частности, можно и математическое определение арифметической прогрессии дать. Ибо, если я бы начал наш урок сразу с него, то арифметическая прогрессия для многих навсегда так и осталась бы монстром в тумане…

        Итак!

        Определение арифметической прогрессии.

        Арифметическая прогрессия – это числовая последовательность, каждый член которой, начиная со второго, отличается от предыдущего члена на одну и ту же величину.

        Вот и всё определение. После предыдущего параграфа, всё должно быть понятно и прозрачно, я надеюсь. Но на некоторых отдельных словах из определения я всё-таки заострю особое внимание.

        Во-первых, слово "последовательность".

        Запоминаем: арифметическая прогрессия – это именно числовая последовательность. А вовсе не ряд, как ошибочно любят её называть очень многие учителя и даже авторы учебников (наверное, для краткости). Что потом неизбежно приводит к путанице терминов и каше в голове уже у студентов, изучающих высшую математику.

        В чём же дело? А вот в чём. Да, на обывательском уровне понятия "последовательность" и "ряд" - почти синонимы. Типа "последовательность покупателей". Или "ряд солдат". Но! В математике словом "ряд" именуется совершенно другое понятие. Хотя и неразрывно связанное с последовательностью, которая, как раз, этот самый ряд и образует.

        Что такое ряд, в этом уроке не скажу! Маленькие ещё.) Сдадите ЕГЭ, поступите в ВУЗ – сами узнаете.) Но в изложении материала я буду строг. И не поленюсь, когда требуется, написать "последовательность чисел" вместо даже "ряд чисел" и уж, тем более, "числовой ряд". Длиннее, но зато более корректно. И никакой путаницы не будет. Привыкаем.)

        Во-вторых, возможно, вы также обратили внимание на слова "начиная со второго" и "отличается от предыдущего". Здесь всё проще. Каждый член арифметической прогрессии на какую-то величину отличается от предыдущего члена. Десятый член отличается от девятого, второй член отличается от первого. А что можно сказать про самый первый член? На какую величину он отличается от предыдущего? А ни на какую!) Ибо у первого члена просто-напросто нет предыдущего. Вот и весь смысл этих слов. Именно поэтому говорить об "отличии от предыдущего" имеет смысл только начиная со второго члена включительно.)

        В-третьих, есть ещё слова "на одну и ту же величину". Эта самая величина носит своё специальное название – разность арифметической прогрессии. К ней и переходим.)

 

        Разность арифметической прогрессии.

        Здесь всё просто.

        Разность арифметической прогрессии – это число (или величина), на которое каждый член прогрессии больше предыдущего.

        Ключевым словом, на которое следует обратить внимание в этом определении, является слово "больше". Математически этот факт означает, что каждый член арифметической прогрессии получается прибавлением разности прогрессии к предыдущему члену.

        Поясняю.

        Для расчёта, скажем, второго члена, надо разность прогрессии прибавить к первому члену. Для расчёта восьмого члена, надо разность прибавить к седьмому члену.

        И так далее, и тому подобное…

        Разность арифметической прогрессии может при этом быть какой угодно. Совершенно любой!

        Разность может быть положительной. Тогда каждый член прогрессии получается и вправду больше предыдущего.

        Например:

        1, 4, 7, 10, 13, …

        Здесь каждый член получается прибавлением положительного числа +3 к предыдущему члену. Такая прогрессия называется возрастающей.

        Также разность может быть и отрицательной. Тогда каждый член прогрессии получается меньше предыдущего. Такая прогрессия называется убывающей.

        Например:

        1, -2, -5, -8, -11, …

        Здесь каждый член получается тоже прибавлением к предыдущему члену, но уже отрицательного числа -3.

        И, наконец, разность прогрессии может быть даже… равной нулю! Да-да! А почему – нет?

        Например:

        2, 2, 2, 2, 2, …

        Всё то же самое. Каждый член прогрессии получается прибавлением к предыдущему члену числа 0.

        Такие прогрессии и не возрастают и не убывают. Мы с вами их рассматривать не будем, ибо никакого практического интереса они не представляют. Но для общего развития знать об их существовании полезно. Скажем, зададут вам вопрос на засыпку: "Может ли арифметическая прогрессия состоять из одинаковых членов?" А вы уже знаете: может! Запросто.)

        Кстати говоря, при работе с арифметической прогрессией бывает очень полезным сразу определить её тип – возрастающая она или убывающая. Это позволяет на раннем этапе сориентироваться в решении, засечь свои ошибки и исправить их, пока не поздно.)

        Разность арифметической прогрессии обозначается, чаще всего, буковкой d.

        Как найти это самое d ? Элементарно! Надо от любого числа прогрессии отнять предыдущее число. Отнять – значит, вычесть. Кстати, результат вычитания так и называется – "разность". Отсюда и название "разность прогрессии" для буковки d.)

        Определим, например, величину d для возрастающей арифметической прогрессии:

        3, 5, 7, 9, 11, 13, …

        Всё просто, как в сказке. Берём любое число последовательности. Какое хотим, такое и берём. Например, 9. И отнимаем предыдущее число. То есть, 7.

        Получаем:

        d = 9 – 7 = 2

        Вот и всё. Это правильный ответ. Для данной арифметической прогрессии разность равна двум.

        Найдём теперь разность d для убывающей арифметической прогрессии. Например, вот такой:

        1, -2, -5, -8, -11, …

        Всё то же самое. Вне зависимости от знаков самих членов, снова просто берём любое число последовательности (например, -11) и отнимаем предыдущее число (т.е. -8).

        Получим:

        d = -11 – (-8) = -11 + 8 = -3

        И все дела.) В этот раз разность прогрессии оказалась отрицательной. Что неудивительно, ибо наша прогрессия – убывающая.)

        Как вы, возможно, заметили, брать можно совершенно любое число в последовательности. Хоть где-нибудь в начале, хоть в конце, хоть в серединке. Нельзя брать только самое первое число. По той простой причине, что у самого первого числа нет предыдущего.

 

        Как обозначать арифметическую прогрессию?

        Любое число в арифметической прогрессии, как мы помним, называется её членом.

        Каждый член арифметической прогрессии, в свою очередь, обязательно имеет свой номер. Причём все номера идут строго по порядку, без пропусков: первый, второй, третий, четвёртый, пятый и так далее.

        Например, в прогрессии

        1, 4, 7, 10, 13, …

        единичка – это первый член, четвёрка – второй, десятка – четвёртый… И так далее. Идея ясна.)

        Прошу обратить внимание: сами числа в прогрессии – совершенно любые! Натуральные, целые, дробные, отрицательные, иррациональные – всякие.) А вот их нумерация – всегда строго по порядку! Это важно.

        Как же нам записать арифметическую прогрессию в общем виде? Никаких проблем! Каждый член последовательности записывается в виде буквы. Для арифметической прогрессии, обычно, используется буква "а". А вот номер члена всегда указывается индексом справа внизу. Сами члены прогрессии просто перечисляем через запятую или точку с запятой.

        Вот так:

        а1, а2, а3, а4, а5, а6, …

        Здесь а1 – первый член прогрессии, а4 – четвёртый член и т.д. А в конце – многоточие. Всё просто, ничего хитрого.)

        Коротко такую прогрессию записывают вот так: (an).

        Так обозначаются бесконечные прогрессии. Конечную же прогрессию можно записать просто перечислением всех её членов и точкой в конце.

        Например, вот так:

        а1, а2, а3, а4, а5, а6.

        Или вот так, если членов много:

        а1, а2, …, а29, а30.

        А вот в краткой записи для конечных прогрессий придётся дополнительно указывать количество членов. Например, вот так:

        (an), n=30.

        Вот, собственно, и все обозначения.

        На этой позитивной ноте считаю наше начальное знакомство с арифметической прогрессией полностью состоявшимся. А теперь, вооружившись глубокими познаниями, можно и задачки порешать. Задачки совсем простые, без фокусов. Чисто для понимания смысла арифметической прогрессии.

 

Простейшие задания по арифметической прогрессии.

       

        Начнём с такой несложной задачки:

        Выпишите первые пять членов арифметической прогрессии (an), если известно, что

        а2 = 3 и d = -1,5.

        Переводим задание с математического языка на русский. Нам дана бесконечная арифметическая прогрессия. Известен второй член этой прогрессии:

        а2 = 3

        Кроме того, нам известна разность прогрессии:

        d = -1,5

        А найти требуется первый, третий, четвёртый и пятый члены этой прогрессии.

        Вот и действуем. Для наглядности я сначала запишу последовательность по условию задачки. Прямо в общем виде, где второй член – тройка:

        а1, 3, а3, а4, а5, …

        А теперь приступаем к поискам. Начинаем, как всегда, с самого простого. Легко можно посчитать, например, третий член a3. Мы же с вами уже знаем (прямо по смыслу арифметической прогрессии), что третий член 3) больше второго 2) на величину d.

        Так прямо и пишем:

        a3 = a2 + d

        Подставляем в это выражение тройку вместо a2  и -1,5 вместо d и считаем. Про минус, естественно, тоже не забываем, да.)

        a3 = 3 + (-1,5) = 3 – 1,5 = 1,5

        Вот так. Третий член оказался меньше второго. Ничего удивительного. Наша разность d – отрицательна. А, если число больше предыдущего на отрицательную величину, то само число, стало быть, будет меньше предыдущего. Убывает наша прогрессия…

        Считаем теперь следующий, четвёртый член нашей прогрессии:

        a4 = a3 + d

        a4 = 1,5 + (-1,5) = 1,5 – 1,5 = 0

        Ну и дальше, по проторенной дорожке:

        a5 = a4 + d

        a5 = 0 + (-1,5) = 0 – 1,5 = -1,5

        Отлично, члены с третьего по пятый найдены. Получилась вот такая последовательность:

        а1; 3; 1,5; 0; -1,5; …

        Осталось лишь найти первый член а1 по известному второму. А это шаг уже в другую сторону – влево.) Это значит, что в данном случае разность d нам надо не прибавить к a2, а отнять.

        Получаем:

        a1 = a2 – d

        a1 = 3 – (-1,5) = 3 + 1,5 = 4,5

        Вот и всё.) Ответ к задачке будет такой:

        4,5; 3; 1,5; 0; -1,5; …

        Что интересного можно заметить в решении данного задания? А заметить можно то, что каждый член прогрессии мы искали по предыдущему (соседнему) члену. Такой способ подсчёта членов прогрессии называется вполне научно – рекуррентным способом. И в дальнейшей работе с прогрессиями (и не только) мы к этому загадочному и страшному слову ещё не раз вернёмся. Так что прошу не пугаться.)

        Что ещё важного можно вынести из решения этой, казалось бы, примитивной задачки? А вот что:

        Если нам известен хотя бы один член и разность арифметической прогрессии, то мы всегда можем найти любой другой член этой прогрессии. Какой хотим.

        Ясненько? Это простое умозаключение позволит вам успешно решать большинство задач школьного курса по данной теме! Все задачи на арифметическую прогрессию вертятся вокруг всего трёх параметров: член прогрессии, разность прогрессии, номер члена прогрессии. И всё!

        Разумеется, вся предыдущая математика не отменятся, да.) В солидных заданиях к прогрессии может прицепляться всё что угодно – и уравнения, и неравенства, и прочие жуткие вещи. Но по самой прогрессии всё всегда крутится вокруг этих трёх простых параметров. Так что имеем в виду.)

 

        Следующее задание уже поинтереснее будет, да.)

        Определите, будет ли число 6 членом арифметической прогрессии (an), если

        a1 = 2,5; d = 1,3.

        Гм… И как тут определишь, будет или нет? Кто ж его знает-то… Что делать?

        Что-что… Записать прогрессию в виде последовательности чисел и посмотреть, будет ли там шестёрка или нет! Для расчёта нам всё необходимое уже дано: дан первый член, дана разность. Вот и считаем. Прямо по смыслу арифметической прогрессии:

        a2 = a1 + d = 2,5 + 1,3 = 3,8

        a3 = a2 + d = 3,8 + 1,3 = 5,1

        a4 = a3 + d = 5,1 + 1,3 = 6,4

        Ну что, стоит считать дальше или нет, как вы думаете? Естественно, нет.) Запишем результаты наших расчётов в виде последовательности:

        1,3; 3,8; 5,1; 6,4; …

        Теперь уже отчётливо видно, что шестёрку мы просто проскочили мимо между членами 5,1 и 6,4. Не вошла шестёрка в нашу последовательность и, стало быть, число 6 не является членом заданной прогрессии.

        Ответ: нет.

 

        А вот теперь задачка на основе реального варианта ОГЭ:

        Выписано несколько последовательных членов арифметической прогрессии:

         …; 14; х; 8; 5; …

         Найдите член прогрессии, обозначенный буквой х.

        Что, внушает? Ни первого члена нет, ни разности d, дана просто последовательность чисел без начала и конца. Это и пугает поначалу. А ведь задачка, на самом деле, проще некуда! Чисто на понимание смысла арифметической прогрессии. Кто понимает этот смысл, тот справится с задачкой буквально в уме.

        Итак, смотрим внимательно на нашу последовательность и соображаем, что именно можно узнать из неё? Какие параметры арифметической прогрессии из трёх главных в ней спрятаны?

        Номера членов? Не-а! Нет здесь ни единого номера. Последовательность у нас простирается как вправо, так и влево…

        Да, номеров членов у нас никаких нет, но зато есть четыре числа и (важно!) слово "последовательных" в условии задачи. А лишних слов в условии задачи никогда не бывает… Это слово означает, что наши числа следуют строго по порядку, без пропусков! Теперь смотрим дальше. Есть ли в этой последовательности два соседних известных числа? Да, безусловно! Это 8 и 5. Раз так, то теперь мы без проблем можем найти разность арифметической прогрессии! Берём пятёрку и отнимаем предыдущее число, т.е. восьмёрку.

        Получаем:

        d = 5 – 8 = -3

        Всё. Дальше осталась сущая элементарщина. Какое число будет предыдущим для икса? Четырнадцать! Значит, икс легко ищется простым сложением: к 14 прибавить разность арифметической прогрессии.

        Получим:

        x = 14 + (-3) = 11

        Вот и вся задачка. Ответ: x = 11.

 

        Ещё одна задачка. Уже посолиднее, но тоже довольно простая.

        Известно, что в арифметической прогрессии a3 = 2,1 и a6 = 6,3. Найдите a4.

        А теперь размышляем. Нас интересует четвёртый член a4. Для его расчёта надо к третьему члену a3 прибавить разность прогрессии d:

        a4 = a3 + d

        Третий член a3 нам известен. Это 2,1. Отлично! Но… где же взять разность прогрессии? Нет её и в помине! А для её определения нам позарез нужны какие-нибудь два известных соседних члена! Где они? Нет их! Но зато нам зачем-то дан шестой член прогрессии a6. И куда его можно пристроить…

        Тупик? Вовсе нет! Сейчас мы с вами поступим по-хитрому. Мы пока ничего считать не будем. Мы будем… рисовать! Да-да! Графическое изображение задачи очень часто высвечивает массу дополнительной информации! И помогает увидеть то, что на словах разглядеть, порой, весьма трудно.

        В нашем случае, рисунок поможет нам не только увидеть разность прогрессии d, но и догадаться, как именно следует её искать!

        Рисуем задачку!

        Берём и схематично изображаем нашу последовательность на числовой оси. Вот так:

        

        Ну как? Увидели d? Нет? Ну ладно…

        А вот так?

        Теперь по картинке чётко видно, что между третьим и шестым членами находится по три равных промежутка. Три раза по d. Или 3d. А какая величина приходится на это самое 3d ? Не проблема! Определим разницу между a6 и a3, да и узнаем:

        a6a3 = 6,3 – 2,1 = 4,2

        3d = 4,2

        d = 1,4

        Отлично. Полдела сделано. Остались сущие пустяки. Прибавляем найденную разность прогрессии к третьему члену и получаем искомый четвёртый член:

        a4 = a3 + d = 2,1 + 1,4 = 3,5

        Вот и всё.

        Ответ: 3,5

 

        Запоминаем: рисунок к задаче очень часто открывает массу дополнительной полезной информации и подсказывает дальнейший ход решения. Не стесняемся делать его, когда есть возможность!

 

        А вот следующие задачки решаем самостоятельно:

        1. Найдите первый отрицательный член арифметической прогрессии, если

            a1 = 7 и d = -2,4.

 

        2. Выписано несколько последовательных членов арифметической прогрессии:

         …; 3,4; х; 5,2; …

         Найдите член прогрессии, обозначенный буквой х.

 

        3. Известно, что число 4 является членом арифметической прогрессии, в которой

            a1 = 1 и d = 0,6. Найдите номер этого члена.

 

        4. Известно, что в арифметической прогрессии a2 = 3 и a7 = 23. Найдите a5.

 

        5. Автобус начал движение от остановки, равномерно увеличивая скорость на 2 м/с. Какую скорость разовьёт автобус через 5 секунд? Ответ дайте в км/ч.

 

        6. Известно, что в арифметической прогрессии a2 = -3 и a6 = -15. Найдите a1.

 

        Ответы (в беспорядке, естественно): 15; -0,2; 0; 6; 36; 4,3.

 

        Ну как? Всё получилось? Отлично! Значит, урок не прошёл даром, и можно осваивать арифметическую прогрессию на более серьёзном уровне. В следующих уроках.)

        Что-то не получается? Рисуйте картинку, не ленитесь! Она реально спасает в некоторых трудных ситуациях! Если вы видите прогрессию глазами, то решать задачу становится намного легче.

        Кстати, в задачке №5 про автобус есть два подводных камня. Первый камень – по правильному составлению арифметической прогрессии. Надо подумать, какую скорость автобуса следует брать за первый член прогрессии. Если вы думаете, что 0 м/с, то задачку не решить, да… А второй подводный камень – по переводу размерностей из одной в другую. Внимательнее читать задание надо, да…

        Последняя задача №6 очень похожа на задачу №4. Только числа отрицательные. Ну и что? Рисуем (правильно) картинку и определяем по ней (правильно) величину d. Главное – внимание и элементарное понимание смысла арифметической прогрессии. И всё получится!)

 

        В этом уроке мы с вами познакомились с арифметической прогрессией и её ключевыми параметрами на самом начальном уровне и порешали простенькие задачки. Как видите, ничего сложного. Прибавляй d к числам, считай себе, пиши последовательность или рисуй картинку – всё и решится.

        Всё просто, но… Пришло время открыть вам горькую правду. Такое элементарное решение "на пальцах" прокатывает только для очень коротких кусочков прогрессии. Таких, где число последовательно рассчитываемых членов не очень большое. Скажем, три, пять или, пускай, даже десять.

        А вот если прогрессия подлиннее, то вычисления значительно усложняются. А рисование картинки – тоже превращается в занятие, мягко говоря, на большого любителя.)

        Например, такая задачка:

        В арифметической прогрессии известно, что a1 = 4 и d = 0,4. Найдите a141.

        И что же, будем много-много раз прибавлять по 0,4? Можно, конечно. Если не жалко часок-другой.)

        В таких ситуациях спасает простая формула! По которой такие задания решаются буквально за минуту! Формула эта будет в следующем уроке. И эта злая задачка там будет решена. Тоже за минуту.)

        До встречи!

abudnikov.ru

Арифметическая прогрессия — Википедия. Что такое Арифметическая прогрессия

Арифмети́ческая прогре́ссия (алгебраическая) — числовая последовательность вида

a1, a1+d, a1+2d, …, a1+(n−1)d, …{\displaystyle a_{1},\ a_{1}+d,\ a_{1}+2d,\ \ldots ,\ a_{1}+(n-1)d,\ \ldots },

то есть последовательность чисел (членов прогрессии), в которой каждое число, начиная со второго, получается из предыдущего добавлением к нему постоянного числа d{\displaystyle d} (шага, или разности прогрессии):

an=an−1+d{\displaystyle a_{n}=a_{n-1}+d\quad }

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

an=a1+(n−1)d{\displaystyle a_{n}=a_{1}+(n-1)d}

Арифметическая прогрессия является монотонной последовательностью. При d>0{\displaystyle d>0} она является возрастающей, а при d<0{\displaystyle d<0} — убывающей. Если d=0{\displaystyle d=0}, то последовательность будет стационарной. Эти утверждения следуют из соотношения an+1−an=d{\displaystyle a_{n+1}-a_{n}=d} для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером n{\displaystyle n} может быть найден по формуле

an=a1+(n−1)d{\displaystyle a_{n}=a_{1}+(n-1)d}
где a1{\displaystyle a_{1}} — первый член прогрессии, d{\displaystyle d} — её разность.

Характеристическое свойство арифметической прогрессии

Последовательность a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } есть арифметическая прогрессия ⇔{\displaystyle \Leftrightarrow } для любого её элемента выполняется условие an=an−1+an+12,n⩾2{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}},n\geqslant 2}.

Доказательство
Необходимость:

Поскольку a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } — арифметическая прогрессия, то для n⩾2{\displaystyle n\geqslant 2} выполняются соотношения:

an=an−1+d{\displaystyle a_{n}=a_{n-1}+d}

an=an+1−d{\displaystyle a_{n}=a_{n+1}-d}.

Сложив эти равенства и разделив обе части на 2, получим an=an−1+an+12{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}}}.

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется an=an−1+an+12{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}}}. Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду an+1−an=an−an−1{\displaystyle a_{n+1}-a_{n}=a_{n}-a_{n-1}}. Поскольку соотношения верны при всех n⩾2{\displaystyle n\geqslant 2}, с помощью математической индукции покажем, что a2−a1=a3−a2=…=an−an−1=an+1−an{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}}.

База индукции (n=2){\displaystyle (n=2)} :

a2−a1=a3−a2{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}} — утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при n=k{\displaystyle n=k}, то есть a2−a1=a3−a2=…=ak−ak−1=ak+1−ak{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}}. Докажем истинность утверждения при n=k+1{\displaystyle n=k+1}:

ak+1−ak=ak+2−ak+1{\displaystyle a_{k+1}-a_{k}=a_{k+2}-a_{k+1}}

Но по предположению индукции следует, что a2−a1=a3−a2=…=ak−ak−1=ak+1−ak{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}}. Получаем, что a2−a1=a3−a2=…=ak−ak−1=ak+1−ak=ak+2−ak+1{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{k}-a_{k-1}=a_{k+1}-a_{k}=a_{k+2}-a_{k+1}}

Итак, утверждение верно и при n=k+1{\displaystyle n=k+1}. Это значит, что an=an−1+an+12,n⩾2⇒a2−a1=a3−a2=…=an−an−1=an+1−an{\displaystyle a_{n}={\frac {a_{n-1}+a_{n+1}}{2}},n\geqslant 2\Rightarrow a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}}.

Обозначим эти разности через d{\displaystyle d}. Итак, a2−a1=a3−a2=…=an−an−1=an+1−an=d{\displaystyle a_{2}-a_{1}=a_{3}-a_{2}=\ldots =a_{n}-a_{n-1}=a_{n+1}-a_{n}=d}, а отсюда имеем an+1=an+d{\displaystyle a_{n+1}=a_{n}+d} для n∈N{\displaystyle n\in \mathbb {N} }. Поскольку для членов последовательности a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } выполняется соотношение an+1=an+d{\displaystyle a_{n+1}=a_{n}+d}, то это есть арифметическая прогрессия.

Сумма первых n{\displaystyle n} членов арифметической прогрессии

Сумма первых n{\displaystyle n} членов арифметической прогрессии Sn=∑i=1nai=a1+a2+…+an{\displaystyle S_{n}=\sum _{i=1}^{n}a_{i}=a_{1}+a_{2}+\ldots +a_{n}} может быть найдена по формулам

Sn=a1+an2⋅n{\displaystyle S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot n} , где a1{\displaystyle a_{1}} — первый член прогрессии, an{\displaystyle a_{n}} — член с номером n{\displaystyle n}, n{\displaystyle n} — количество суммируемых членов.
Sn=a1+an2⋅(an−a1a2−a1+1){\displaystyle S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot ({\frac {a_{n}-a_{1}}{a_{2}-a_{1}}}+1)} — где a1{\displaystyle a_{1}} — первый член прогрессии, a2{\displaystyle a_{2}} — второй член прогрессии ,an{\displaystyle ,a_{n}} — член с номером n{\displaystyle n}.
Sn=2a1+d(n−1)2⋅n{\displaystyle S_{n}={\frac {2a_{1}+d(n-1)}{2}}\cdot n} , где a1{\displaystyle a_{1}} — первый член прогрессии, d{\displaystyle d} — разность прогрессии, n{\displaystyle n} — количество суммируемых членов.
Доказательство
Запишем сумму двумя способами:

Sn=a1+a2+a3+…+an−2+an−1+an{\displaystyle S_{n}=a_{1}+a_{2}+a_{3}+\ldots +a_{n-2}+a_{n-1}+a_{n}}

Sn=an+an−1+an−2+…+a3+a2+a1{\displaystyle S_{n}=a_{n}+a_{n-1}+a_{n-2}+\ldots +a_{3}+a_{2}+a_{1}} — та же сумма, только слагаемые идут в обратном порядке.

Теперь сложим оба равенства, последовательно складывая в правой части слагаемые, которые стоят на одной вертикали:

2Sn=(a1+an)+(a2+an−1)+(a3+an−2)+…+(an−2+a3)+(an−1+a2)+(an+a1){\displaystyle 2S_{n}=(a_{1}+a_{n})+(a_{2}+a_{n-1})+(a_{3}+a_{n-2})+\ldots +(a_{n-2}+a_{3})+(a_{n-1}+a_{2})+(a_{n}+a_{1})}

Покажем, что все слагаемые (все скобки) полученной суммы равны между собой. В общем виде каждое слагаемое можно подать в виде ai+an−i+1,i=1,2,…,n{\displaystyle a_{i}+a_{n-i+1},i=1,2,\ldots ,n}. Воспользуемся формулой общего члена арифметической прогрессии:

ai+an−i+1=a1+(i−1)d+a1+(n−i+1−1)d=2a1+(n−1)d,i=1,2,…,n{\displaystyle a_{i}+a_{n-i+1}=a_{1}+(i-1)d+a_{1}+(n-i+1-1)d=2a_{1}+(n-1)d,i=1,2,\ldots ,n}

Получили, что каждое слагаемое не зависит от i{\displaystyle i} и равно 2a1+(n−1)d{\displaystyle 2a_{1}+(n-1)d}. В частности, a1+an=2a1+(n−1)d{\displaystyle a_{1}+a_{n}=2a_{1}+(n-1)d}. Поскольку таких слагаемых n{\displaystyle n}, то

2Sn=(a1+an)⋅n⇒Sn=a1+an2⋅n{\displaystyle 2S_{n}=(a_{1}+a_{n})\cdot n\Rightarrow S_{n}={\frac {a_{1}+a_{n}}{2}}\cdot n}

Третья формула для суммы получается подстановкой 2a1+(n−1)d{\displaystyle 2a_{1}+(n-1)d} вместо a1+an{\displaystyle a_{1}+a_{n}}. Что и так непосредственно следует из выражения для общего члена.

Замечание:

Вместо a1+an{\displaystyle a_{1}+a_{n}} в первой формуле для суммы можно взять любое из других слагаемых ai+an−i+1,i=2,3,…,n{\displaystyle a_{i}+a_{n-i+1},i=2,3,\ldots ,n}, так как они все равны между собой.

Сходимость арифметической прогрессии

Арифметическая прогрессия a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } расходится при d≠0{\displaystyle d\neq 0} и сходится при d=0{\displaystyle d=0}. Причём

limn→∞an={+∞, d>0−∞, d<0a1, d=0{\displaystyle \lim _{n\rightarrow \infty }a_{n}=\left\{{\begin{matrix}+\infty ,\ d>0\\-\infty ,\ d<0\\a_{1},\ d=0\end{matrix}}\right.}
Доказательство
Записав выражение для общего члена и исследуя предел limn→∞(a1+(n−1)d){\displaystyle \lim _{n\rightarrow \infty }(a_{1}+(n-1)d)}, получаем искомый результат.

Связь между арифметической и геометрической прогрессиями

Пусть a1,a2,a3,…{\displaystyle a_{1},a_{2},a_{3},\ldots } — арифметическая прогрессия с разностью d{\displaystyle d} и число a>0{\displaystyle a>0}. Тогда последовательность вида aa1,aa2,aa3,…{\displaystyle a^{a_{1}},a^{a_{2}},a^{a_{3}},\ldots } есть геометрическая прогрессия со знаменателем ad{\displaystyle a^{d}}.

Доказательство
Проверим характеристическое свойство для образованной геометрической прогрессии:
aan−1⋅aan+1=aan,n⩾2{\displaystyle {\sqrt {a^{a_{n-1}}\cdot a^{a_{n+1}}}}=a^{a_{n}},n\geqslant 2}

Воспользуемся выражением для общего члена арифметической прогрессии:

aan−1⋅aan+1=aa1+(n−2)d⋅aa1+nd=a2a1+2(n−1)d=(aa1+(n−1)d)2=aa1+(n−1)d=aan,n⩾2{\displaystyle {\sqrt {a^{a_{n-1}}\cdot a^{a_{n+1}}}}={\sqrt {a^{a_{1}+(n-2)d}\cdot a^{a_{1}+nd}}}={\sqrt {a^{2a_{1}+2(n-1)d}}}={\sqrt {(a^{a_{1}+(n-1)d})^{2}}}=a^{a_{1}+(n-1)d}=a^{a_{n}},n\geqslant 2}

Итак, поскольку характеристическое свойство выполняется, то aa1,aa2,aa3,…{\displaystyle a^{a_{1}},a^{a_{2}},a^{a_{3}},\ldots } — геометрическая прогрессия. Её знаменатель можно найти, например, из соотношения q=aa2aa1=aa1+daa1=ad{\displaystyle q={\frac {a^{a_{2}}}{a^{a_{1}}}}={\frac {a^{a_{1}+d}}{a^{a_{1}}}}=a^{d}}.

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Если [ai]1n{\displaystyle \left[a_{i}\right]_{1}^{n}} — арифметическая прогрессия порядка m{\displaystyle m}, то существует многочлен Pm(i)=cmim+...+c1i+c0{\displaystyle P_{m}(i)=c_{m}i^{m}+...+c_{1}i+c_{0}}, такой, что для всех i∈{1,....n}{\displaystyle i\in \left\{1,....n\right\}} выполняется равенство ai=Pm(i){\displaystyle a_{i}=P_{m}(i)}[1]

Примеры

  • Натуральный ряд 1,2,3,4,5,…{\displaystyle 1,2,3,4,5,\ldots } — это арифметическая прогрессия, в которой первый член a1=1{\displaystyle a_{1}=1}, а разность d=1{\displaystyle d=1}.
  • 1,−1,−3,−5,−7{\displaystyle 1,-1,-3,-5,-7} — первые 5 членов арифметической прогрессии, в которой a1=1{\displaystyle a_{1}=1} и d=−2{\displaystyle d=-2}.
  • Если все элементы некоторой последовательности равны между собой и равны некоторому числу a{\displaystyle a}, то это есть арифметическая прогрессия, в которой a1=a{\displaystyle a_{1}=a} и d=0{\displaystyle d=0}. В частности, π,π,π,…{\displaystyle \pi ,\pi ,\pi ,\ldots } есть арифметическая прогрессия с разностью d=0{\displaystyle d=0}.
  • Сумма первых n{\displaystyle n} натуральных чисел выражается формулой
∑i=1ni=1+2+3+…+n=n(n+1)2{\displaystyle \sum _{i=1}^{n}i=1+2+3+\ldots +n={\frac {n(n+1)}{2}}}

Занимательная история

Согласно легенде, школьный учитель математики юного Гаусса, чтобы занять детей на долгое время, предложил им сосчитать сумму чисел от 1 до 100. Гаусс заметил, что попарные суммы с противоположных концов одинаковы: 1+100=101, 2+99=101 и т. д., и мгновенно получил результат: 5050. Действительно, легко видеть, что решение сводится к формуле

n(n+1)2{\displaystyle {\frac {n(n+1)}{2}}}

то есть к формуле суммы первых n{\displaystyle n} чисел натурального ряда.

См. также

Ссылки

Примечания

Литература

wiki.sc

Арифметическая и геометрическая прогрессии

Арифметическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен сумме предыдущего члена и некоторого фиксированного числа d:

Фиксированное число d называется разностью арифметической прогрессии.

Формула n-го члена арифметической прогрессии:

Сумма первых n членов арифметической прогрессии вычисляется по формуле:

Каждый член арифметической прогрессии, начиная со второго, есть среднее арифметическое соседних:

Геометрическая прогрессия — это последовательность, каждый член которой, начиная со второго, равен произведению предыдущего члена и некоторого фиксированного числа q:

Фиксированное число q называется знаменателем геометрической прогрессии.

Формула n-го члена геометрической прогрессии:

Формула суммы первых n членов геометрической прогрессии вычисляется по формуле:


Квадрат каждого члена геометрической прогрессии, начиная со второго, равен произведению соседних: .

Для решения задач на нахождение наибольших и наименьших значений функций – повторите тему «Производная».

 

Примеры решения задач

 

 

 

ege-study.ru

Арифметическая прогрессия - это... Что такое Арифметическая прогрессия?

У этого термина существуют и другие значения, см. Прогрессия.

Арифмети́ческая прогре́ссия — числовая последовательность вида

,

то есть последовательность чисел (членов прогрессии), каждое из которых, начиная со второго, получается из предыдущего добавлением к нему постоянного числа (шага или разности прогрессии):

Любой (n-й) член прогрессии может быть вычислен по формуле общего члена:

Арифметическая прогрессия является монотонной последовательностью. При она является возрастающей, а при  — убывающей. Если , то последовательность будет стационарной. Эти утверждения следуют из соотношения для членов арифметической прогрессии.

Свойства

Общий член арифметической прогрессии

Член арифметической прогрессии с номером может быть найден по формуле

, где  — первый член прогрессии,  — ее разность.

Доказательство

Характеристическое свойство арифметической прогрессии

Последовательность есть арифметическая прогрессия для ее элементов выполняется условие .

Доказательство

Необходимость:

Поскольку — арифметическая прогрессия, то для выполняются соотношения:

.

Сложив эти равенства и разделив обе части на 2, получим .

Достаточность:

Имеем, что для каждого элемента последовательности, начиная со второго, выполняется . Следует показать, что эта последовательность есть арифметическая прогрессия. Преобразуем эту формулу к виду . Поскольку соотношения верны при всех , с помощью математической индукции покажем, что .

База индукции  :

— утверждение истинно.

Переход индукции:

Пусть наше утверждение верно при , то есть . Докажем истинность утверждения при :

Но по предположению индукции следует, что . Получаем, что .

Итак, утверждение верно и при . Это значит, что .

Обозначим эти разности через . Итак, , а отсюда имеем для . Поскольку для членов последовательности выполняется соотношение , то это есть арифметическая прогрессия.

Сумма первых членов арифметической прогрессии

Сумма первых членов арифметической прогрессии может быть найдена по формулам

, где  — первый член прогрессии,  — член с номером ,  — количество суммируемых членов.
, где  — первый член прогрессии,  — разность прогрессии,  — количество суммируемых членов.

Доказательство

Сходимость арифметической прогрессии

Арифметическая прогрессия расходится при и сходится при . Причем

Доказательство

Записав выражение для общего члена и исследуя предел , получаем искомый результат.

Связь между арифметической и геометрической прогрессиями

Пусть  — арифметическая прогрессия с разностью и число . Тогда последовательность вида есть геометрическая прогрессия со знаменателем .

Доказательство

Проверим характеристическое свойство для образованной геометрической прогрессии:

Воспользуемся выражением для общего члена арифметической прогрессии:

Итак, поскольку характеристическое свойство выполняется, то — геометрическая прогрессия. Ее знаменатель можно найти, например, из соотношения .

Арифметические прогрессии высших порядков

Арифметической прогрессией второго порядка называется такая последовательность чисел, что последовательность их разностей сама образует простую арифметическую прогрессию. Примером может служить последовательность квадратов натуральных чисел:

0, 1, 4, 9, 16, 25, 36…,

разности которых образуют простую арифметическую прогрессию с разностью 2:

1, 3, 5, 7, 9, 11…

Аналогично определяются и прогрессии более высоких порядков. В частности, последовательность n-ных степеней образует арифметическую прогрессию n-го порядка.

Примеры

.

См. также

Ссылки

dic.academic.ru

Алгебра. Урок 6. Прогрессии - ЁП

Смотрите бесплатные видео-уроки на канале Ёжику Понятно.

Видео-уроки на канале Ёжику Понятно. Подпишись!

Содержание страницы:

 

Числовая последовательность – это функция, заданная на множестве натуральных чисел. Каждый элемент последовательности имеет свой порядковый номер.

an=f(n),n∈ℕПримеры числовых последовательностей:

  1. Натуральные числа: 1;2;3;4;5;6;7;…
  1. Квадраты натуральных чисел: 1;4;9;16;25;36;49;…
  1. Все целые числа от -3 до 3:−3;−2;−1;0;1;2;3.

Числа в последовательности могут быть любыми – положительными и отрицательными, целыми и дробными, рациональными и иррациональными.

Так почему же, спросите вы, в определении числовой последовательности есть фраза «функция, заданная на множестве натуральных чисел»? Потому что каждый член последовательности имеет свой порядковый номер (ну а нумеруем мы с единицы).

  1. Натуральные числа:

a1=1,a2=2,a3=3,a4=4,a5=5,…

  1. Квадраты натуральных чисел:

a1=1,a2=4,a3=9,a4=16,a5=25,…

  1. Все целые числа от -3 до 3:

a1=−3,a2=−2,a3=−1,a4=0,a5=1,a6=2,a7=3.

Последовательности могут быть бесконечными (1и2) и конечными (3).

 

Числовые последовательности можно задавать несколькими способами:

  1. Словесный. Последовательность описывается словами.

Примеры:

  • натуральные числа,
  • квадратуры натуральных чисел,
  • все целые числа от -3до 3.
  1. Аналитический. Последовательность задается формулой n-ного члена: an=f(n). По этой формуле можно найти любой член последовательности.

Примеры:

  • an=n – последовательность натуральных чисел,
  • an=n2 – последовательность квадратов натуральных чисел,
  • an=n−4,n∈[1;7] – последовательность целых чисел от -3до 3.
  1. Рекуррентный. Последовательность задается формулой, по которой каждый следующий член последовательности находится через предыдущие. В этом случае всегда дополнительно задается один или несколько первых членов последовательности.

Примеры:

  • a1=1,an+1=an+1 – последовательность натуральных чисел.

Для нахождения каждого следующего члена последовательности требуется знать предыдущий.

a1=1

n=1,an+1=an+1⇒a2=a1+1=1+1=2

n=2,an+1=an+1⇒a3=a2+1=2+1=3

n=3,an+1=an+1⇒a4=a3+1=3+1=4

n=4,an+1=an+1⇒a5=a4+1=4+1=5

и так далее…

  • a1=1,an+1=(an+1)2 – последовательность квадратов натуральных чисел.

Для нахождения каждого следующего члена последовательности требуется знать предыдущий.

a1=1;

n=1,an+1=(an+1)2⇒a2=(a1+1)2=(1+1)2=22=4

n=2,an+1=(an+1)2⇒a3=(a2+1)2=(4+1)2=32=9

n=3,an+1=(an+1)2⇒a4=(a3+1)2=(9+1)2=42=16

n=4,an+1=(an+1)2⇒a5=(a4+1)2=(16+1)2=52=25

и так далее…

  • a1=−3,an+1=an+1,an≤3 – последовательность целых чисел от -3до 3.

a1=−3;an≤3

an+1=an+1⇒a2=a1+1=−3+1=−2;−2≤3

an+1=an+1⇒a3=a2+1=−2+1=−1;−1≤3

an+1=an+1⇒a4=a3+1=−1+1=0;0≤3

an+1=an+1⇒a5=a4+1=0+1=1;1≤3

an+1=an+1⇒a6=a5+1=1+1=2;2≤3

an+1=an+1⇒a7=a6+1=2+1=3;3≤3

an+1=an+1⇒a8=a7+1=3+1=4;4≤3

Последний член последовательности будет a7 , так как a8 не удовлетворяет условию an≤3

 

Арифметической прогрессией {an} называют числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, сложенному с одним и тем же для данной последовательности числом.

Разностью d арифметической прогрессии называют число, которое каждый раз прибавляют к предыдущему числу.

d=an+1−an

Числовая последовательность a1,a2,a3,a4,… будет являться арифметической прогрессией, если:

a2=a1+da3=a2+d…an=an−1+d

Арифметическая прогрессия может быть

  • возрастающей, если d>0(0;2;4;6;8;…)
  • убывающей, если d<0(0;−2;−4;−6;−8;…)
  • стабильной (постоянной), если d=0(5;5;5;5;5;…)

Примеры арифметической прогрессии:

  1. 1;3;5;7;9;…a1=1,d=2
  2. 10;5;0;−5;−10;−15;…a1=10,d=−5
  3. 4;4;4;4;4;…a1=4,d=0

 

Определение:

(1)an+1=an+d

Разность:

(2)d=an+1−an

Формула n-го члена:

(3)an=a1+(n−1)d

Сумма n первых членов:

(4)Sn=a1+an2⋅n

Свойства:

(5)an=an−1+an+12

(6)an=an−k+an+k2

 

Геометрической прогрессией {bn} называют числовую последовательность, каждый член которой, начиная со второго, равен предыдущему, умноженному на одно и то же данной последовательности число.

Знаменателем q геометрической прогрессии называют число, на которое каждый раз умножают предыдущее число.

q=bn+1bn

В геометрической прогрессии есть ограничения: b1≠0,q≠0.
Числовая последовательность b1,b2,b3,b4,… будет являться геометрической прогрессией, если: b2=b1⋅qb3=b2⋅q=b1⋅q2…bn=bn−1⋅q=b1⋅qn−1

Геометрическая прогрессия может быть

  • возрастающей, если абсолютная величина (без учета знака) знаменателя больше единицы, т.е. |q|>1;
  • убывающей, если абсолютная величина (без учета знака) знаменателя меньше единицы, т.е. |q|<1;
  • знакопеременной, если знаменатель меньше нуля, т.е. q<0.

Примеры геометрической прогрессии:

  1. 1;3;9;27;81;…b1=1,q=3
  2. 8;4;2;1;12;14;…b1=8,q=12
  3. 1;−2;4;−8;16;…b1=1,q=−2

 

Определение:

(1)bn+1=bn⋅q

Знаменатель:

(2)q=bn+1bn

Формула n-го члена:

(3)bn=b1⋅qn−1

Сумма n первых членов:

(4)Sn=b1⋅(qn−1)q−1

Свойства:

(5)bn=bn−1⋅bn+1

(6)bn=bn−k⋅bn+k

 

 

Скачать домашнее задание к уроку 6.

 

epmat.ru


Смотрите также