Акустика что это такое


Акустика — Википедия

Материал из Википедии — свободной энциклопедии

Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.[1]

Акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, химию, медицину, гигиену, теорию музыки и другие.

Термин «акустика» (фр. acoustique) был введён в 1701 году Ж. Совёром[2].

Основные направления современной акустики[править | править код]

  • Общая (физическая) акустика — теория излучения и распространения звука в различных средах, теория дифракции, интерференции и рассеяния звуковых волн. Линейные и нелинейные процессы распространения звука.
  • Геометрическая акустика — раздел акустики, предметом изучения которого являются законы распространения звука. В основе лежит представление о том, что звуковые лучи — это линии, касательные к которым совпадают с направлением распространения энергии акустических колебаний.
  • Архитектурная акустика — законы распространения звука в закрытых (полуоткрытых, открытых) помещениях, методы управления структурой поля и т. д.
  • Строительная акустика — защита от шума зданий, промышленных предприятий (расчёт конструкций и сооружений, выбор материалов и т. д.).
  • Психоакустика — основные законы слухового восприятия, определения связи объективных и субъективных параметров звука, определения законов расшифровки «звукового образа».
  • Музыкальная акустика — проблемы создания, распространения и восприятия звуков, используемых в музыке.
  • Биоакустика — теория восприятия и излучения звука биологическими объектами, изучение слуховой системы различных видов животных и др.
  • Электроакустика — раздел прикладной акустики, занимающийся теорией, методами расчёта и созданием электроакустических преобразователей
  • Аэроакустика (авиационная акустика) — излучение и распространение шумов в авиационных конструкциях.
  • Гидроакустика — распространение, поглощение, затухание звука в воде, теория гидроакустических преобразователей, теория антенн и гидроакустических эхолокаторов, распознавание движущихся объектов и др.
  • Акустика транспорта — анализ шумов, разработка методов и средств звукопоглощения и звукоизоляции в различных видах транспорта (самолётах, поездах, автомобилях и др.)
  • Медицинская акустика — разработка медицинской аппаратуры, основанной на обработке и передаче звуковых сигналов (слуховые аппараты, диагностические приборы)
  • Ультразвуковая акустика — теория ультразвука, создание ультразвуковой аппаратуры, в том числе ультразвуковых преобразователей для промышленного применения в гидроакустике, измерительной технике и др.
  • Квантовая акустика (акустоэлектроника) — теория гиперзвука, создание фильтров на поверхностных акустических волнах
  • Акустика речи — теория и синтез речи, выделение речи на фоне шумов, автоматическое распознавание речи и т. д.
  • Цифровая акустика — связана с созданием микропроцессорной (аудиопроцессорной) и компьютерной техники.

Интересными направлениями исследования в акустике на макроскопическом уровне являются

  • распространение звука в движущихся средах
  • рассеяние звука на неоднородностях среды и распространение звука в неупорядоченных средах
  • характер макроскопических течений в поле звуковой волны
  • поведение вещества в поле сильной ультразвуковой волны, кавитационные явления

На микроскопическом уровне упругое колебание среды описывается фононами — коллективными колебаниями атомов или ионов. В металлах и полупроводниках такие колебания ионов приводят и к колебаниям электронной жидкости, то есть, на макроскопическом уровне, звук может порождать электрический ток. Подраздел акустики, изучающий такие явления и возможности их использования, называется акустоэлектроникой.

Другое близкое по духу направление исследования — акустооптика, то есть изучение взаимодействия звуковых и световых волн в среде, в частности, дифракция света на ультразвуке.

  • Аннотация // Лепендин Л. Ф. Акустика. — 1978. — 448 с.
  • Дж. В. Стрэтт (Лорд Рэлей) Теория звука. пер. с англ. в 2-х томах. М.: Государственное издательство технико-теоретической литературы, 1940. - т. 1 - 500 с., т. 2 - 476 с.
  • Маньковский В.С. Акустика студий и залов для звуковоспроизведения. - М.: Искусство, 1966. - 376 с.
  • Алдошина И., Приттс Р. Музыкальная акустика. Учебник. — СПб.: Композитор, 2006. — 720 с. ISBN 5-7379-0298-6

ru.wikipedia.org

Акустика - это... Что такое Акустика?

Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.[1]

Акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, медицину, гигиену, теорию музыки и другие.

Иногда (в обиходе) под акустикой понимают также акустическую систему — электрическое устройство, предназначенное для преобразования тока переменной частоты в звуковые колебания при помощи электро-акустического преобразования. Также термин акустика применим для обозначения колебательных свойств, связанных с качеством распространения звука в какой-либо системе или каком-либо помещении, например, «хорошая акустика концертного зала».

Термин «акустика» (фр. acoustique) был введён в 1701 году Ж. Совёром[2].

Основные направления современной акустики

  • Общая (физическая) акустика — теория излучения и распространения звука в различных средах, теория дифракции, интерференции и рассеяния звуковых волн. Линейные и нелинейные процессы распространения звука.
  • Геометрическая акустика — раздел акустики, предметом изучения которого являются законы распространения звука. В основе лежит представление о том, что звуковые лучи — это линии, касательные к которым совпадают с направлением распространения энергии акустических колебаний.
  • Архитектурная акустика — законы распространения звука в закрытых (полуоткрытых, открытых) помещениях, методы управления структурой поля и т. д.
  • Строительная акустика — защита от шума зданий, промышленных предприятий (расчёт конструкций и сооружений, выбор материалов и т. д.).
  • Психоакустика — основные законы слухового восприятия, определения связи объективных и субъективных параметров звука, определения законов расшифровки «звукового образа».
  • Музыкальная акустика — проблемы создания, распространения и восприятия звуков, используемых в музыке.
  • Биоакустика — теория восприятия и излучения звука биологическими объектами, изучение слуховой системы различных видов животных и др.
  • Электроакустика — раздел прикладной акустики, занимающийся теорией, методами расчёта и созданием электроакустических преобразователей
  • Аэроакустика (авиационная акустика) — излучение и распространение шумов в авиационных конструкциях.
  • Гидроакустика — распространение, поглощение, затухание звука в воде, теория гидроакустических преобразователей, теория антенн и гидроакустических эхолокаторов, распознавание движущихся объектов и др.
  • Акустика транспорта — анализ шумов, разработка методов и средств звукопоглощения и звукоизоляции в различных видах транспорта (самолётах, поездах, автомобилях и др.)
  • Медицинская акустика — разработка медицинской аппаратуры, основанной на обработке и передаче звуковых сигналов (слуховые аппараты, диагностические приборы)
  • Ультразвуковая акустика — теория ультразвука, создание ультразвуковой аппаратуры, в том числе ультразвуковых преобразователей для промышленного применения в гидроакустике, измерительной технике и др.
  • Квантовая акустика (акустоэлектроника) — теория гиперзвука, создание фильтров на поверхностных акустических волнах
  • Акустика речи — теория и синтез речи, выделение речи на фоне шумов, автоматическое распознавание речи и т. д.
  • Цифровая акустика — связана с созданием микропроцессорной (аудиопроцессорной) и компьютерной техники.

Интересными направлениями исследования в акустике на макроскопическом уровне являются

  • распространение звука в движущихся средах
  • рассеяние звука на неоднородностях среды и распространение звука в неупорядоченных средах
  • характер макроскопических течений в поле звуковой волны
  • поведение вещества в поле сильной ультразвуковой волны, кавитационные явления

На микроскопическом уровне упругое колебание среды описывается фононами — коллективными колебаниями атомов или ионов. В металлах и полупроводниках такие колебания ионов приводят и к колебаниям электронной жидкости, то есть, на макроскопическом уровне, звук может порождать электрический ток. Подраздел акустики, изучающий такие явления и возможности их использования, называется акустоэлектроникой.

Другое близкое по духу направление исследования — акустооптика, то есть изучение взаимодействия звуковых и световых волн в среде, в частности, дифракция света на ультразвуке.

См. также

Примечания

Литература

  • Аннотация // Лепендин Л. Ф. Акустика. — 1978. — 448 с.
  • Дж. В. Стрэтт (Лорд Рэлей) Теория звука. пер. с англ. в 2-х томах. М.: Государственное издательство технико-теоретической литературы, 1940. - т. 1 - 500 с., т. 2 - 476 с.
  • Маньковский В.С. Акустика студий и залов для звуковоспроизведения. - М.: Искусство, 1966. - 376 с.
  • Алдошина И., Приттс Р. Музыкальная акустика. Учебник. — СПб.: Композитор, 2006. — 720 с. ISBN 5-7379-0298-6

Ссылки

Разделы акустики

 

dic.academic.ru

АКУСТИКА - это... Что такое АКУСТИКА?

(от греч. akustikos - слуховой) - область физики, в к-рой исследуются упругие колебания и волны от самых низких частот (условно от 0 Гц) до предельно высоких (1012-1013 Гц), процессы их возбуждения и распространения, взаимодействие их с веществом и разнообразные применения.

А.- одна из самых древних областей знания. Она возникла за неск. веков до н. э. как учение о звуке, т. е. об упругих волнах, воспринимаемых человеческим ухом (отсюда и происхождение назв. "А."). Начало становления А. как физ. науки (17 в.) связано с исследованиями системы, музыкальных тонов, их источников (струны, трубы), с измерениями скорости распространения звука. До нач. 20 в. А. развивалась как раздел механики. Создавалась общая теория ме-ханич. колебаний, излучения и распространения звуковых волн в среде, разрабатывались методы измерений параметров звуковых волн - звукового давления, потока энергии, скорости распространения. Диапазон исследуемых упругих волн расширился и охватил области ниже (инфразвук) и выше (ультразвук) области слышимых частот. Создание методов разложения сложного колебат. процесса на простые составляющие (метод Фурье) заложило основы анализа звука н синтеза сложного звука из простых составляющих. Весь этот классич. этап развития А. подытожен к нач. 20 в. Рэлеем (Дж. У. Стретт, J. W. Strutt).

Новый этап развития А. начался в 20-е гг. 20 в. в связи с развитием радиотехники и радиовещания, к-рые вызвали необходимость разработки методов и средств преобразвания эл.-магн. энергии в акустическую, и обратно. В связи с развитием электроники и физики строения вещества возникли новые направления в А.

В совр. А. можно выделить ряд разделов. Общие закономерности излучения, распространения и приёма упругих колебаний п волн изучает теория звука, широко использующая матем. методы, разработанные в общей теории колебаний и волн. Наряду с волновым подходом для рассмотрения задач распространения звука в определ. условиях (малость длины волны по сравнению с масштабом препятствий) пользуются и представлениями о звуковых лучах. По этому методич. признаку из общей теории звука выделяется раздел лучевой А., или геометрической акустики (аналогично геом. оптике).

Применительно к различным характерным моделям сред распространения волн и адекватным им методам рассмотрения акустич. полей сформировались такие направления теории звука, как статистич. А., акустика движущихся сред, кристаллоакустика. Быстро развивается нелинейная акустика, связанная с изучением волн большой амплитуды, для к-рых свойства среды нельзя, как при классич. подходе, считать неизменными; сами звуковые волны большой интенсивности возмущают среду, вследствие чего нарушается принцип суперпозиции и возникает взаимодействие разл. волновых мод. Развитие нелинейной А. обусловлено, в частности, мощным техн. прогрессом и возникшей необходимостью рассмотрения излучения звука источниками большой мощности.

Важнейший раздел А., наиб. тесно связанный с другими ведущими областями совр. физики,- физ. А., занимающаяся изучением особенностей распространения упругих волн в веществе - газообразном, твёрдом или жидком, исследованием взаимодействия волн с веществом на разных уровнях, в частности акустоэлектронного взаимодействия, акустооптического, фонон-фононного взаимодействия и др. видов взаимодействия упругих волн с квазичастицами. Подразделами физ. А. являются молекулярная акустика, квантовая А., оптоакустика и др. Методы физ. А.- неотъемлемая часть арсенала эксперим. средств совр. физики.

Распространение акустич. волн в естеств. средах - атмосфере, водах Мирового океана, в земной коре и связанные с этим явления изучаются в атмосферной акустике, гидроакустике, геоакустике. Акустич. волны являются важнейшим средством зондирования этих сред, средством получения информации об их строении и о наличии в них разнообразных включений. К гидроакустике тесно примыкает такая важная и широко развитая прикладная область, как гидролокация.

Электроакустика изучает вопросы эл.-акустич. преобразований и связана со всеми др. областями А., т. к. аппаратура для разл. видов акустич. измерений, как правило, базируется на преобразовании акустич. сигналов в электрические, а способы излучения звука в большинстве случаев основаны на преобразовании электрич. энергии в акустическую. К электроакустике относится и изучение фундам. физ. вопросов, связанных с эффектами эл.-механич. и эл.-акустич. преобразований в веществе, поэтому здесь она тесно смыкается с физ. А.

К прикладным областям А. можно отнести архитектурную А., строительную А., музыкальную А., а также весьма большой раздел совр. А., связанный с изучением шумов и вибраций и созданием методов борьбы с ними. Изучение аэродинамич. генерации шумов большой интенсивности относится к проблемам нелинейной акустики; здесь имеется также самая тесная связь с совр. аэродинамикой, так что иногда говорят о спец. разделе А.- аэроакустике.

Огромное прикладное значение как в технике физ. эксперимента, так и в промышленности, на транспорте, в медицине и др. имеет т. н. УЗ-техника (см. Ультразвук). В устройствах УЗ-техники используются как ультразвуковой, так и гиперзвуковой, а частично и звуковой диапазоны частот. УЗ применяется как средство воздействия на вещество (напр., УЗ-технология в промышленности, терапия и хирургия в медицине), для получения информации (контрольно-измерит. применения УЗ, УЗ-диагностика, гидролокация), обработки сигналов ( акустоэлектроника, акустооптика).

Особый раздел А.- биол. А.- занимающаяся вопросами распространения акустич. волн в живых тканях, воздействия УЗ на биоткань, изучением звукоизлучающих и звукопринимающих органов у живых организмов. Исследованием органов ипроцессов звуковосприятия и звукоизлучения у человека, а также проблемами речеобразования, передачи и восприятия речи занимается физиологич. и психологич. А. Результаты этих исследований используются в звукотехнике, архитектурной А., при разработке систем передачи речи, в теории информации и связи, в музыке, медицине, биофизике и т. п.

Лит.: Стретт Дж. В. (лорд Рэлей), Теория звука, пер. с англ., 2 изд., т. 1-2, М., 1955; Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964; Физическая акустика, [под ред. У. Мэзона и Р. Терстона], пер. с англ., т. 1-7, М., 1966-74; Физика и техника мощного ультразвука, под ред. Л. Д. Розенберга, [кн. 1-3], М., 1967-70; Исакович М. А., Общая акустика, М., 1973; Эльпинер И. Е., Биофизика ультразвука, М., 1973; Руденко О. В., Солуян С. И., Теоретические основы нелинейной акустики, М., 1975; Скучик Е., Основы акустики, пер. с англ., т. 1-2, М., 1976; Тэйлор Р., Шум, [пер. с англ.], М., 1978; Урик Р. Д., Основы гидроакустики, пер. с англ., Л., 1978; Бреховских Л. М., Лысанов Ю. П., Теоретические основы акустики океана, Л., 1982; Xаясака Т., Электроакустика, пер. с япон., М., 1982. И. П. Голямина.

Физическая энциклопедия. В 5-ти томах. — М.: Советская энциклопедия. Главный редактор А. М. Прохоров. 1988.

dic.academic.ru

Слово АКУСТИКА - Что такое АКУСТИКА?

Слово состоит из 8 букв: первая а, вторая к, третья у, четвёртая с, пятая т, шестая и, седьмая к, последняя а,

Слово акустика английскими буквами(транслитом) - akustika

Значения слова акустика. Что такое акустика?

Акустика

Акустика. (от греч. akustikos - слуховой). Область физики, в которой исследуются упругие колебания и волны от самых низких частот (условно от 0 Гц) до предельно высоких (1012-1013 Гц), процессы их возбуждения и распространения…

Астрономический глоссарий "Астронет"

Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием.

ru.wikipedia.org

АКУСТИКА (от греч. akustikos - слуховой) - область физики, в к-рой исследуются упругие колебания и волны от самых низких частот (условно от 0 Гц) до предельно высоких (10 12-10 13 Гц), процессы их возбуждения и распространения…

Физическая энциклопедия. - 1988

ЗВУК И АКУСТИКА

ЗВУК И АКУСТИКА Звук - это колебания, т.е. периодическое механическое возмущение в упругих средах - газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде…

Энциклопедия Кольера

ЗВУК И АКУСТИКА. Звук – это колебания, т.е. периодическое механическое возмущение в упругих средах – газообразных, жидких и твердых. Такое возмущение, представляющее собой некоторое физическое изменение в среде…

Энциклопедия Кругосвет

Нелинейная акустика

НЕЛИНЕЙНАЯ АКУСТИКА область акустики, изучающая явления, для описания к-рых обычные приближения линейной теории звука недостаточны и необходим учёт нелинейных членов ур-ний гидродинамики и ур-ния состояния.

Физическая энциклопедия. - 1988

НЕЛИНЕЙНАЯ АКУСТИКА - область акустики, в к-рой изучают явления в звуковых полях большой интенсивности и взаимодействия звуковых волн с возмущениями другой природы (гидродинамич., тепловыми, эл.-магн. и т. д.).

Физическая энциклопедия. - 1988

Нелинейная акустика - раздел общей акустики, изучающий интенсивные звуковые процессы, когда принцип суперпозиции не выполняется и звуковая волна при распространении изменяет свойства среды.

glossary.ru

Атмосферная акустика

Атмосферная акустика, раздел акустики, в котором изучаются распространение и генерация звука в реальной атмосфере и исследуется атмосфера акустическими методами.

БСЭ. — 1969—1978

АТМОСФЕРНАЯ АКУСТИКА — раздел акустики, в к-ром изучаются распространение и генерация звука в атмосфере и исследуются св-ва атмосферы акустич. методами.

Физическая энциклопедия. - 1988

Атмосферная акустика - раздел прикладной акустики, исследующий особенности распространения звука в атмосфере, обусловленные неоднородностью ее структуры.

glossary.ru

Музыкальная акустика

Музыкальная акустика, наука, изучающая объективные физические закономерности музыки в связи с её восприятием и исполнением. Исследует такие явления, как высота звука, громкость звука, тембр и длительность музыкальных звуков, консонанс и диссонанс…

БСЭ. — 1969—1978

Музыкальная акустика — раздел акустики, изучающий физические свойства музыкальных звуков. Как и общая акустика, музыкальная акустика — междисциплинарная наука. В своих исследованиях она привлекает данные и (частично) понятийный аппарат других наук...

ru.wikipedia.org

МУЗЫКАЛЬНАЯ АКУСТИКА — область акустики, в к-рой изучают объективные физ. закономерности музыки в связи с её восприятием и исполнением. Исследуют хар-ки муз. звуков (высоту, громкость, спектр, переходные процессы и др.), разл. муз. системы и строп.

Физическая энциклопедия. - 1988

Молекулярная акустика

МОЛЕКУЛЯРНАЯ АКУСТИКА - раздел физ. акустики, в к-ром структура и свойства вещества и кинетика молекулярных процессов исследуются акустич. методами. Осн. методы M. а.- измерения скорости звука и коэф. поглощения звука в зависимости от разл. физ.

Физическая энциклопедия. - 1988

Молекулярная акустика, раздел физической акустики, в котором свойства вещества и кинетика молекулярных процессов исследуются акустическими методами. Основными методами М. а.

БСЭ. — 1969—1978

МОЛЕКУЛЯРНАЯ АКУСТИКА — раздел физ. акустики, в к-ром св-ва в-ва и кинетика мол. процессов исследуются акустич. методами. Осн. методами М. а. явл. измерение скорости звука и поглощения звука и зависимостей этих величин от частоты звук.

Физическая энциклопедия. - 1988

Строительная акустика

Строительная акустика — научная дисциплина, занимающаяся вопросами защиты жилых и иных помещений, территорий и зданий от шума и решающая эти вопросы архитектурно-планировочными и строительными (конструктивными) методами.

ru.wikipedia.org

Строительная акустика, научная дисциплина, изучающая вопросы защиты помещений, зданий и территорий населённых мест от шума архитектурно-планировочными и строительно-акустическими (конструктивными) методами.

БСЭ. — 1969—1978

СТРОИТЕЛЬНАЯ АКУСТИКА — область прикладной акустики, в к-рой изучаются вопросы защиты помещений, зданий и территорий населённых мест от шума. Осн. задача С. а.— разработка и изыскание конструктивных элементов зданий…

Физическая энциклопедия. - 1988

Архитектурная акустика

Архитектурная акустика — наука, изучающая законы распространения звуковых волн в закрытых (полуоткрытых, открытых) помещениях, отражение и поглощение звука поверхностями, влияние отражённых волн на слышимость речи и музыки...

ru.wikipedia.org

Архитектурная акустика, акустика помещений, область акустики, изучающая распространение звуковых волн в помещении, отражение и поглощение их поверхностями, влияние отражённых волн на слышимость речи и музыки.

БСЭ. — 1969—1978

АРХИТЕКТУРНАЯ АКУСТИКА (акустика помещений) раздел акустики, в к-ром изучается распространение звук. волн в помещении, отражение и поглощение их поверхностями, влияние отражённых волн на слышимость речи и музыки.

Физическая энциклопедия. - 1988

Геометрическая акустика

Геометри́ческая аку́стика — раздел акустики, предметом изучения которого являются законы распространения звука. В основе лежит представление о том, что звуковые лучи — это линии...

ru.wikipedia.org

Геометрическая акустика, раздел акустики, в котором изучаются законы распространения звука на основе представления о звуковых лучах как линиях, вдоль которых распространяется звуковая энергия.

БСЭ. — 1969—1978

ГЕОМЕТРИЧЕСКАЯ АКУСТИКА раздел акустики, в к-ром изучаются законы распространения звука на основе представления о звук. лучах как линиях, вдоль к-рых распространяется звук. энергия.

Физическая энциклопедия. - 1988

Физиологическая акустика

ФИЗИОЛОГИЧЕСКАЯ АКУСТИКА психофизиологическая акустика, раздел акустики, изучающий устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных.

Физическая энциклопедия. - 1988

Физиологическая акустика, психофизиологическая акустика, раздел акустики, изучающий устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных.

БСЭ. — 1969—1978

ФИЗИОЛОГИЧЕСКАЯ АКУСТИКА — психофизиологическая акустика, раздел акустики, изучающий устройство и работу звуковоспринимающих и звукообразующих органов у человека и животных.

Физическая энциклопедия. - 1988

Русский язык

Аку́стика, -и.

Орфографический словарь. — 2004

Примеры употребления слова акустика

Музыкантов пригласили на станцию "Кропоткинская", где оказалась хорошая акустика.

В стандартное оснащение входит акустика Bose, за отдельную плату доступна система Burmeister.

Думает проводить здесь музыкальные вечера. Акустика в этих стенах, говорят, уникальная.

Форма зала и его акустика проработаны специально для оптимального распространения звука.

Также девушка отмечает, что в концертном зале Мальмё очень хорошая акустика.

Акустика устойчиво держит сигнал на расстоянии 10 метров от источника звука.


  1. акустиками
  2. акустикам
  3. акустиках
  4. акустика
  5. акустико
  6. акустик
  7. акустический

wordhelp.ru

Как выбрать акустическую систему Hi-Fi | Домашние аудиосистемы | Блог

Термин «Hi-Fi» знаком всем, кто хотя бы самую малость интересуется аудиотехникой. Что этот термин подразумевает, тоже известно многим: Hi-Fi – сокращение от «High Fidelity» - «высокая достоверность». А вот дальше начинается путаница – аудио-форумы полны многостраничных споров о том, относится ли некая конкретная техника к Hi-Fi. При этом спорящие вовсю аргументируют свою позицию терминами наподобие «живой звук», «сочный бас» и «глубина звучания». Так что же такое Hi-Fi акустика, и чем она отличается от обычной?

Немного про КНИ, АЧХ и стандарт IEC 60581

Проблема определения качества звука встала с появлением первых же звуковоспроизводящих устройств. Понятно, что качество воспроизводимого звука определяется его соответствием оригинальному звуку. Но как оценить это соответствие?

Поначалу оценка производилась исключительно субъективно. Один из первых логотипов музыкальных компаний изображал собаку у граммофона – подразумевалось, что качество звука позволяет собаке узнать голос хозяина в записи.

Объективная количественная оценка качества звука стала возможна только в середине XX века – с развитием электроники и знаний о природе звука. Искажения, вносимые аппаратурой в звук, разделили на линейные и нелинейные.

Линейные искажения изменяют громкость (амплитуду) звуков разной частоты, но при этом не вносят тембральных искажений (Например, «до» большой октавы будет звучать громче, а «соль» третьей – тише, хотя изначально они звучали на одинаковой громкости. Но при этом частоты этих нот останутся неизменны).

Линейные искажения характеризуются графиком АЧХ (амплитудно-частотной характеристики), изображающим зависимость громкости воспроизводимого звука от его частоты. В идеале график должен быть прямым во всем слышимом диапазоне (20-20000 Гц). В реальности прямым он не бывает никогда и отклонения этого графика от прямой линии во многом говорят о качестве аудотехники.

null

По приведенной АЧХ можно сделать вывод, что звуки частотой ниже 150 Гц будут звучать тихо, а частотой ниже 50 Гц - не будут слышны вообще. Басов у этих колонок не будет. Также заметен провал по высоким частотам (выше 10 кГц).

Нелинейные искажения вносят в звуковую картину новые тембральные составляющие (Допустим, записали вы звук «ля» первой октавы с синтезатора – чистые 440 Гц. В идеале при воспроизведении должны звучать те же 440 Гц, но в реальности спектр воспроизводимого сигнала будет шире – например, от 430 до 450 Гц. Это происходит как раз из-за нелинейных искажений).

Характеризуются нелинейные искажения коэффициентом нелинейных искажений (КНИ), и он также зависит от частоты воспроизводимого сигнала, поэтому для оценки качества аудиотехники используют график зависимости КНИ от частоты.

null

График КНИ показывает нам сильные нелинейности в низкочастном диапазоне - 40-60 Гц. Качество басов на этих колонках будет ниже среднего. Кроме того, следует ожидать искажений звука музыкальных инструментов в районе пятой октавы (4-6 кГц).

Правда, ни АЧХ, ни графика КНИ вы, скорее всего, не найдете в паспорте на акустику. Так зачем это всё надо? Для понимания, что такое Hi-Fi.

В рамках стандарта IEC 60581-7 к акустическим системам высококачественного воспроизведения (High Fidelity) предъявляются следующие требования по качеству звука:

  • Нелинейность АЧХ не более ± 4 дБ в диапазоне 100-4000 Гц и +4/-8 дБ в диапазоне 50-12500 Гц;
  • Коэффициент нелинейных искажений не более 3% в диапазоне 250-1000 Гц и 1% в диапазоне 1000-2000 Гц.

Это все, что подразумевается под термином Hi-Fi. Характеристики типа «полновесный глубокий артикулированный бас» к Hi-Fi никакого отношения не имеют.

А если попроще – что такое Hi-Fi акустика?

Это качественная акустика, обеспечивающая высокое соответствие входящего аудиосигнала и воспроизводимого звука на наиболее часто используемых частотах.

Но:

1. Стандарт ничего не говорит о частотах ниже 50 Гц и выше 12500. Эти частоты остаются на совести производителя. Впрочем, акустика Hi-Fi, обеспечивающая хорошее качество звука в диапазоне 50-12500 Гц, скорее обеспечит его и на других частотах, чем техника, к Hi-Fi не относящаяся.

2. Стандарт IEC 60581 не вводит понятие маркировки «Hi-Fi» и не определяет условий её нанесения на аппаратуру или упаковку. Проще говоря, надпись «Hi-Fi» на коробке не означает соответствие аппаратуры стандарту IEC 60581 – это тоже полностью на совести производителя. И если именитые бренды, разумеется, не станут наносить маркировку «Hi-Fi» без проведения соответствующей сертификации, то от малоизвестных производителей такой честности ждать не приходится.

3. Положения стандарта IEC 60581 практически не менялись с 1976 года и порядком устарели. АЧХ и КНИ недостаточно для однозначного определения качественного звука.

Поэтому при выборе Hi-Fi акустики следует обратить внимание на некоторые дополнительные характеристики, не учтенные стандартом, но оказывающие значительное влияние, как на качество звука, так и на цену техники.

Характеристики акустических систем Hi-Fi

Состав комплекта. Если простая акустика может состоять из пары колонок (либо пары колонок и сабвуфера), то большинство Hi-Fi акустики предназначено для построения систем объемного звука формата 5.1. Полный комплект 5.1 содержит пару фронтальных колонок, пару тыловых, центральную и сабвуфер.

Сабвуферк системе часто покупается отдельно, а вот остальные компоненты лучше брать одним комплектом. В комплектах все элементы согласованы по АЧХ, чувствительности и мощности. Несогласованность компонентов системы может привести к ухудшению «объемности» звука.

Номинальная суммарная мощность влияет на максимальную громкость акустической системы – чем мощность больше, тем громче она будет звучать при правильно подобранном усилителе.

Рекомендуется, чтобы мощность усилителя была чуть меньше суммарной мощности акустики – это предохранит её от повышенных нагрузок. Следует обратить внимание на мощность каждого канала – тыловые колонки часто имеют мощность меньше остальных, это следует учесть при подборе усилителя.

И, разумеется, мощность должна соответствовать помещению, в котором система будет установлена.

Системы с суммарной мощностью до 50 Ватт подойдут для небольших помещений в 10-15 м2.

Для помещений в 20-40 м2 потребуется мощность 50-100 Ватт.

Для больших помещений и для открытого воздуха нужна мощность более 100 Вт.

Оценка эта весьма приблизительна, многое также зависит от чувствительности колонок, от акустики комнаты, материала стен и стеновых покрытий, количества мебели, расположения колонок и т.д.

Максимальная суммарная мощность – это мощность, на которой система может проработать без повреждений непродолжительное (до 2 с) время. Если максимальная мощность усилителя выше, чем максимальная суммарная мощность системы, следует воздержаться от прослушивания музыки на громкости, близкой к максимальной.

Минимальная и максимальная воспроизводимые частоты определяют полноту звука акустической системы. Человеческое ухо слышит звуки частотой от 20 до 20000 Гц, поэтому, чем ближе минимальная частота системы к 20, а максимальная – к 20000, тем полнее будет её звук.

Однако никакой одиночный динамик не способен охватить весь этот диапазон со сколь-нибудь приемлемой АЧХ, поэтому в колонки устанавливается несколько динамиков, каждый из которых «отвечает» за отдельную полосу (диапазон частот).

Колонки с количеством полос, большим единицы, обычно имеют более ровную АЧХ, что обеспечивает отсутствие «провалов» в воспроизводимом диапазоне частот. Это не означает, что чем больше полос - тем лучше, и что любая трехполосная колонка по умолчанию лучше любой двухполосной. Многое зависит от качества динамиков и от их частотных характеристик.

Если минимальная частота акустической системы выше 60 Гц, то без сабвуфера не обойтись – иначе «провал» по басам будет слишком заметен.

По максимальной частоте Hi-Fi системы, как правило, в слышимый диапазон укладываются все. Но у некоторых систем указана максимальная частота намного выше – 22000, 30000 и даже 45000 Гц. Разумеется, человеческое ухо таких частот не слышит. Максимальная частота выше 20 кГц скорее является показателем того, что на слышимом участке АЧХ системы будет максимально ровной.

Вариант исполнения колонок. Компактный корпус полочных (навесных) колонок намного дешевле «башни» напольных. При одинаковом содержимом напольные колонки будут стоить заметно дороже.

С другой стороны, необходимость использования недешевых подставок под полочные колонки разницу в цене сводит к нулю – хоть они и называются «полочными», ставить их просто на полки не рекомендуется.

Колонки – как напольные, так и полочные – нельзя размещать вплотную к стене: это плохо скажется на качестве звука. Минимальное расстояние от колонки до стены обычно приводится в руководстве. На стену можно вешать колонки в навесном исполнении – близость стены предусмотрена их конструкцией.

Часто попадаются рекомендации, что напольные колонки предназначены для больших комнат, а полочные – для маленьких. Рекомендация сомнительная, так как по занимаемой площади полочные колонки на стойках ничуть не уступают напольным. Другое дело, что мощные трехполосные колонки чаще встречаются в напольном исполнении. Такие действительно не стоит ставить в маленькую комнату, но вовсе не из-за исполнения, а из-за чрезмерной мощности.

Акустическое оформление колонокпризвано решить проблему «ненужного» звука с тыльной стороны динамика, генерирующегося в противофазе основному и ослабляющего его при отсутствии корпуса.

В корпусе типа «закрытый ящик» звук за динамиком просто глушится. При этом в герметичном корпусе за динамиком создается воздушная подушка, поддерживающая диффузор при громких звуках, поэтому максимальная мощность колонок в корпусе «закрытый ящик» выше. Недостатком такого корпуса является то, что немаленькая часть мощности уходит «вхолостую», поэтому при одинаковой мощности колонки в герметичных корпусах звучат тише.

null

В фазоинверторном корпусе звук с задней стороны динамика выходит через трубу фазоинвертора. Расстояние от задней стороны диффузора до отверстия рассчитано таким образом, чтобы фазы звуковых волн с передней и задней стороны диффузора складывались, усиливая звук. Длина волны зависит от частоты, поэтому эффект фазоинвертора проявляется в небольшом диапазоне частот - и обычно это низкие частоты. Наличие фазоинвертора позволяет расширить "вниз" частотный диапазон колонок – при отсутствии сабвуфера это может оказаться нелишним.

null

Чувствительностьколонки определяет создаваемое ей звуковое давление, показывая, насколько громко (в дБ) будет звучать поданный на вход сигнал в 1Вт на расстоянии 1м от колонки. Для систем сравнимой мощности – чем больше чувствительность, тем громче звук.

Импеданс акустической системы должен соответствовать допустимому сопротивлению нагрузки усилителя. Если импеданс системы будет ниже допустимого для усилителя, его выходной каскад может перегореть, не выдержав возросших токов. Если же наоборот, нагрузка будет больше допустимой для усилителя, то звук системы будет намного тише, чем если бы подключение производилось правильно.

Варианты выбора акустических систем Hi-Fi

Hi-Fi вовсе не означает «очень дорого», акустические системы Hi-Fi начального уровня способны обеспечить вас качественным звуком по вполне доступной цене.

Для полноценного «объемного звука» вам потребуется [url="https://www.dns-shop.ru/catalog/17a9f13016404e77/akusticheskie-sistemy-hi-fi/?order=1&groupBy=none&stock=2&f=68pi&f=hnqpw-68vy-68vz&f=692l]система из пяти сателлитов.

Для небольшого помещения (до 15м2) хватит [url="https://www.dns-shop.ru/catalog/17a9f13016404e77/akusticheskie-sistemy-hi-fi/?order=1&groupBy=none&stock=2&fr=1-50]акустической системы мощностью до 50 Вт.

Для средних помещений (20-40 м2) потребуется [url="https://www.dns-shop.ru/catalog/17a9f13016404e77/akusticheskie-sistemy-hi-fi/?order=1&groupBy=none&stock=2&fr=50.1-100]акустическая система мощностью в 50-100 Вт.

Для открытого воздуха и больших помещений нужны [url="https://www.dns-shop.ru/catalog/17a9f13016404e77/akusticheskie-sistemy-hi-fi/?order=1&groupBy=none&stock=2&fr=100.1-540]акустические системы соответствующей мощности.

club.dns-shop.ru

Акустика. Физика звука

Как мы слышим? Какова скорость звука? Как он распространяется? На все эти вопросы отвечает отдельная наука о природе звука - акустика. 

Что такое акустика

Определение

Акустика - наука о физической природе звука. 

Но что такое звук? Звук - механические колебания, распространяющиеся в виде упругой волны в жидкой, твердой или газообразной среде. 

Характеристики звука

Звуковые волны, в зависимости от их спектра, делятся на шумы и музыкальные звуки.

Традиционно, звуком называют колебания определенной частоты, воспринимаемые слухом человека. Диапазон частот колебаний, которое воспринимает ухо: от 20 до 20000 Герц. Данное деление условно и границы диапазона не являются четкими, все зависит также от индивидуальных особенностей слуха каждого человека. Речь и большинство звуков, которые мы слышим, лежат в пределах около 4000-5000 Герц.  

Ниже границы в 20 Герц лежит область инфразвука, а выше верхней границы слышимого диапазона - область ультразвука.

Частота ϑ связана с длиной волны λ соотношением λ=Vϑ, где V - скорость распространения звука в среде.

Помимо частоты и длины волны звук характеризуется громкостью. Громкость (уровень звукового давления) измеряется в децибелах. 

Определение

Децибел - логарифмическая единица измерения громкости звука, одна десятая часть белла.

1 Db=20lgp20 мкПа, где p - измеренное звуковое давление, 20 мкПа - минимальное звуковое давление, при котором человек слышит звук.

Современные направления акустики

Акустика изучает вопросы распространения звуковых волн в различных средах и прикладные проблемы, связанные с этим. Исследования в области акустики проводились еще в глубокой древности. Доказательством тому служит факт построения античных амфитеатров таким образом, чтобы зрители даже на высоких трибунах могли слышать речь актеров. 

В настоящее время акустика разделяется на множество направлений, таких как:

  • физическая акустика;

  • психоакустика;

  • музыкальная акустика;

  • электроакустика;

  • медицинская акустика;

  • биоакустика;

  • физиологическая акустика;

  • гидроакустика.

zaochnik.com

Акустика — Википедия. Что такое Акустика

Материал из Википедии — свободной энциклопедии

Аку́стика (от греч. ἀκούω (аку́о) — слышу) — наука о звуке, изучающая физическую природу звука и проблемы, связанные с его возникновением, распространением, восприятием и воздействием. Акустика является одним из направлений физики (механики), исследующих упругие колебания и волны от самых низких (условно от 0 Гц) до высоких частот.[1]

Акустика является междисциплинарной наукой, использующей для решения своих проблем широкий круг дисциплин: математику, физику, психологию, архитектуру, электронику, биологию, химию, медицину, гигиену, теорию музыки и другие.

Термин «акустика» (фр. acoustique) был введён в 1701 году Ж. Совёром[2].

Основные направления современной акустики

  • Общая (физическая) акустика — теория излучения и распространения звука в различных средах, теория дифракции, интерференции и рассеяния звуковых волн. Линейные и нелинейные процессы распространения звука.
  • Геометрическая акустика — раздел акустики, предметом изучения которого являются законы распространения звука. В основе лежит представление о том, что звуковые лучи — это линии, касательные к которым совпадают с направлением распространения энергии акустических колебаний.
  • Архитектурная акустика — законы распространения звука в закрытых (полуоткрытых, открытых) помещениях, методы управления структурой поля и т. д.
  • Строительная акустика — защита от шума зданий, промышленных предприятий (расчёт конструкций и сооружений, выбор материалов и т. д.).
  • Психоакустика — основные законы слухового восприятия, определения связи объективных и субъективных параметров звука, определения законов расшифровки «звукового образа».
  • Музыкальная акустика — проблемы создания, распространения и восприятия звуков, используемых в музыке.
  • Биоакустика — теория восприятия и излучения звука биологическими объектами, изучение слуховой системы различных видов животных и др.
  • Электроакустика — раздел прикладной акустики, занимающийся теорией, методами расчёта и созданием электроакустических преобразователей
  • Аэроакустика (авиационная акустика) — излучение и распространение шумов в авиационных конструкциях.
  • Гидроакустика — распространение, поглощение, затухание звука в воде, теория гидроакустических преобразователей, теория антенн и гидроакустических эхолокаторов, распознавание движущихся объектов и др.
  • Акустика транспорта — анализ шумов, разработка методов и средств звукопоглощения и звукоизоляции в различных видах транспорта (самолётах, поездах, автомобилях и др.)
  • Медицинская акустика — разработка медицинской аппаратуры, основанной на обработке и передаче звуковых сигналов (слуховые аппараты, диагностические приборы)
  • Ультразвуковая акустика — теория ультразвука, создание ультразвуковой аппаратуры, в том числе ультразвуковых преобразователей для промышленного применения в гидроакустике, измерительной технике и др.
  • Квантовая акустика (акустоэлектроника) — теория гиперзвука, создание фильтров на поверхностных акустических волнах
  • Акустика речи — теория и синтез речи, выделение речи на фоне шумов, автоматическое распознавание речи и т. д.
  • Цифровая акустика — связана с созданием микропроцессорной (аудиопроцессорной) и компьютерной техники.

Интересными направлениями исследования в акустике на макроскопическом уровне являются

  • распространение звука в движущихся средах
  • рассеяние звука на неоднородностях среды и распространение звука в неупорядоченных средах
  • характер макроскопических течений в поле звуковой волны
  • поведение вещества в поле сильной ультразвуковой волны, кавитационные явления

На микроскопическом уровне упругое колебание среды описывается фононами — коллективными колебаниями атомов или ионов. В металлах и полупроводниках такие колебания ионов приводят и к колебаниям электронной жидкости, то есть, на макроскопическом уровне, звук может порождать электрический ток. Подраздел акустики, изучающий такие явления и возможности их использования, называется акустоэлектроникой.

Другое близкое по духу направление исследования — акустооптика, то есть изучение взаимодействия звуковых и световых волн в среде, в частности, дифракция света на ультразвуке.

См. также

Примечания

Литература

  • Аннотация // Лепендин Л. Ф. Акустика. — 1978. — 448 с.
  • Дж. В. Стрэтт (Лорд Рэлей) Теория звука. пер. с англ. в 2-х томах. М.: Государственное издательство технико-теоретической литературы, 1940. - т. 1 - 500 с., т. 2 - 476 с.
  • Маньковский В.С. Акустика студий и залов для звуковоспроизведения. - М.: Искусство, 1966. - 376 с.
  • Алдошина И., Приттс Р. Музыкальная акустика. Учебник. — СПб.: Композитор, 2006. — 720 с. ISBN 5-7379-0298-6

Ссылки

wiki.sc

типы акустического оформления колонок / Stereo.ru

Чтобы как следует разобраться в процессах, происходящих в ящике, на стенке которого смонтирован один или несколько динамиков, нужно вдумчиво прочитать пару-тройку книжек, в каждой из которых формул больше, чем во всем школьном курсе физики. Я забираться в такие дебри не буду, так что не стоит данный материал как исчерпывающий анализ или руководство по постройке аудиофильских колонок. Однако очень надеюсь, что он поможет начинающим меломанам (да и некоторым хроническим тоже) как следует сориентироваться в разнообразии акустических решений, каждое из которых его разработчики, разумеется, называют единственно правильным.

Некоторое время после изобретения в 1924 году электродинамического излучателя с коническим диффузором (окей, просто динамика), его деревянное обрамление исполняло в первую очередь декоративные и защитные функции. Оно и понятно — после долгих лет прослушивания пластинок через слюдяные мембраны и раструбы граммофонов, саунд нового устройства и безо всякой акустической доработки казался просто апофеозом благозвучия.

Мембраны граммофонов изготавливались чаще всего из алюминия или слюды

Однако технологии записи быстро совершенствовались и стало понятно, что более-менее правдоподобно воспроизвести слышимый диапазон динамиком, просто закрепленном на некой подставке, крайне проблематично. Дело в том, что предоставленная сама себе динамическая головка находится в состоянии акустического короткого замыкания. То есть волны от фронтальной и тыловой поверхностей диффузора, излучаемые, понятное дело, в противофазе, беспрепятственно накладываются друг на друга, что самым печальным образом отражается на эффективности работы, и в первую очередь на передаче басов.

Кстати, в процессе данного рассказа я буду чаще всего рассуждать именно о низких частотах, так как их воспроизведение — ключевой момент в работе любого корпуса АС. ВЧ-драйверы в силу малой длины излучаемых волн во взаимодействии с внутренним объемом колонки вообще не нуждаются, и чаще всего полностью от него изолированы.

Душа нараспашку

Самый простой способ отделить фронтальное излучения динамика от тылового — смонтировать его на щите как можно большего размера. Из этой простой идеи и родились, собственно, первые акустические системы, представлявшие собой ящик с открытой задней стенкой, поскольку для компактности края щита просто взяли, да и загнули под прямым углом. Однако в плане воспроизведения басов успехи подобных конструкций впечатляли не слишком. Помимо несовершенства корпуса проблема была еще и в очень небольшом по современным понятиям ходе подвески диффузоров. Чтобы хоть как-то выйти из положения, использовались динамики как можно большего размера, способные развивать приемлемое звуковое давление при небольшой амплитуде колебаний.

PureAudioProject Trio 15TB с 15-дюймовыми НЧ-драйверами на трехслойных бамбуковых панелях

Несмотря на кажущуюся примитивность подобных конструкций, у них имелись и кое-какие достоинства, причем настолько специфические и интересные, что адепты открытых АС не перевелись до сих пор.

Начать с того, что отсутствие каких-либо препятствий на пути звуковых волн – лучший путь к повышению чувствительности. Момент этот особенно ценен для аудиофильских ламповых усилителей, в особенности однотактных или лишенных обратной связи. Бумажные диффузоры большого диаметра даже на мощности порядка четырех-пяти ватт способны создать довольно-таки внушительный, и при этом на удивление открытый и свободный саунд.

При высоте 1,2 м в мире открытой акустики Jamo R907 считаются практически компактами

Что же касается тылового излучения, то чтобы не вносить искажений в прямой звук, оно должно приходить к слушателю с заметной задержкой (свыше 12-15 мс) — в таком случае его влияние ощущается как легкая реверберация, лишь добавляющая в саунд воздуха и расширяющая музыкальное пространство. Тонкость в том, что для создания этой самой «заметной задержки» колонки, разумеется, должны быть расположены на изрядном расстоянии от стен. К тому же большая площадь передней панели и внушительные размеры НЧ-драйверов соответствующим образом сказываются на общих габаритах АС. Одним словом, обладателей небольших и даже средних жилых комнат просьба не беспокоиться.

Кстати, частный случай открытых систем — акустика, построенная на электростатических излучателях. Только за счет почти невесомой диафрагмы большой площади, ко всем вышеописанным преимуществам, у электростатов добавляется способность филигранно передавать даже самые резкие динамические контрасты, а благодаря отсутствию разделения сигнала в зонах СЧ и ВЧ, еще и завидная тембральная точность.

Открытое оформление

Плюсы: Высококлассные открытые колонки — отличный способ получить реальный кайф от прослушивания пуристских ламповых однотактников.

Минусы: Про жирные компрессионные басы лучше забыть сразу. Весь звуковой тракт должен быть подчинен идее открытой акустики, а сами колонки придется выбирать из крайне ограниченного числа предложений.

Запертый в ящике

С ростом мощности и улучшением параметров усилителей сверхвысокая чувствительность акустики перестала быть главным камнем преткновения, а вот проблемы неравномерности АЧХ, и в особенности правильного воспроизведения басов, стали еще более актуальными.

Гигантский шаг к прогрессу в данном направлении сделал в 1954 году американский инженер Эдгар Вильчур. Он запатентовал акустическую систему закрытого типа, и это был отнюдь не трюк в стиле нынешних патентных троллей.

Патентная заявка Эдгара Вильчура на АС в закрытом оформлении

К тому моменту уже был изобретен фазоинвертор и, понятное дело, к ящику с дном динамик тоже примеряли неоднократно, только вот ничего хорошего из этого не получалось. Из-за упругости замкнутого объема воздуха приходилось или терять существенную часть энергии диффузора, или делать корпус непомерно большим, чтобы снизить градиент давления. Вильчур же решил обратить зло во благо. Он сильно понизил упругость подвеса, переложив таким образом контроль за движением диффузора на объем воздуха — пружину куда более линейную и стабильную, чем гофр или резиновое кольцо.

В закрытом ящике движения диффузора контролируются воздухом — в отличие от бумаги или резины он не стареет и не изнашивается

Так удалось не только полностью избавиться от акустического короткого замыкания и поднять отдачу на низких частотах, но и ощутимо сгладить АЧХ на всем ее протяжении. Однако обнаружился и минорный момент. Выяснилось, что демпфирование замкнутым объемом воздуха приводит к повышению резонансной частоты подвижной системы и резкому ухудшению воспроизведения частот ниже данного порога. Для борьбы с такой неприятностью пришлось увеличивать массу диффузора, что логичным образом привело к снижению чувствительности. Плюс поглощение внутри «черного ящика» чуть ли не половины акустической энергии, не могло не внести вклада в снижение звукового давления. Одним словом, новому типу колонок потребовались усилители довольно серьезной мощности. К счастью, на тот момент они уже существовали.

Сабвуфер SVS SB13-Ultra с закрытым акустическим оформлением

Сегодня закрытое оформление применяется по большей части в сабвуферах, особенно в тех, что претендуют на серьезное музыкальное исполнительство. Дело в том, что для домашних кинотеатров энергичная отработка самых низких басов часто оказывается важнее динамической и фазовой точности на всем протяжении НЧ-диапазона. А вот объединив относительно компактный закрытый саб с приличными сателлитами, можно добиться куда более правильного звука — пускай и не наполненного сверхглубокими басами, зато крайне быстрого, собранного и четкого. Всё вышесказанное можно отнести и на счет полнодиапазонных колонок, «закрытые» модели которых изредка появляются на рынке.

Закрытый ящик

Плюсы: Образцовая скорость атаки и разрешение в низкочастотном диапазоне. Относительная компактность конструкции.

Минусы: Требуется достаточно мощный усилитель. Сверхглубоких басов на грани инфразвука добиться весьма затруднительно.

Дело — труба

Еще одним способом обуздания противофазного тылового излучения стал фазоинвертор, по-русски буквально «разворачиватель фазы». Чаще всего он представляет собой полую трубку, смонтированную на передней или задней поверхности корпуса. Принцип работы понятен из названия и незамысловат: раз избавляться от излучения обратной стороны диффузора трудно и нерационально, значит нужно синхронизировать его по фазе с фронтальными волнами и использовать на благо слушателей.

Амплитуда и фаза движения воздуха в фазоинверторе меняются в зависимости от частоты колебаний диффузора

По сути труба с воздухом является самостоятельной колебательной системой, получающей импульс от движения воздуха внутри корпуса. Обладая совершенно определенной частотой резонанса, фазоинвертор работает тем эффективнее, чем ближе колебания диффузора к частоте его настройки. Звуковые волны более высоких частот сдвинуть с места воздух в трубе просто не успевают, а более низкие хотя и успевают, но чем они ниже, тем сильнее смещается фаза излучения фазоинвертора, и, соответственно, его эффективность. Когда поворот фазы достигает 180 градусов, тоннель начинает откровенно и весьма эффективно глушить звук басового драйвера. Именно этим объясняется очень крутое падение звукового давления АС ниже частоты настройки фазоинвертора — 24 дБ/окт.

В борьбе с турбулентными призвуками конструкторы фазоинверторов постоянно экспериментируют

У закрытого ящика, между прочим, на частотах ниже резонансной спад АЧХ куда более плавный — 12 дБ/окт. Однако в отличие от глухой коробки, коробка с трубой в боковой стенке не заставляет конструкторов идти на любые хитрости ради максимального снижения резонансной частоты самого динамика, что довольно хлопотно и дорого. Тоннель фазоинвертора настроить куда проще — достаточно подобрать ее внутренний объем. Это, правда, в теории. На практике, как всегда, начинаются непредвиденные сложности, например, на больших уровнях громкости воздух на выходе из отверстия может шуметь почти как ветер в печном дымоходе. К тому же инертность системы частенько становится причиной падения скорости атаки и ухудшения артикуляции на басах. Одним словом, простор для экспериментов и оптимизации перед конструкторами фазоинверторных систем открывается просто невероятный.

Фазоинвертор

Плюсы: Энергичная отдача на НЧ, возможность воспроизведения самых глубоких басов, относительная простота и дешевизна изготовления (при изрядной сложности расчета).

Минусы: В большинстве реализаций проигрывает закрытому ящику в скорости атаки и четкости артикуляции.

Обойдемся без катушки

Попытки избавиться от генетических проблем фазоинвертора, а заодно и сэкономить на объеме корпуса без ущерба для глубины баса, натолкнули разработчиков на идею заменить полую трубу на мембрану, приводимую в движение колебаниями все того же рабочего объема воздуха. Проще говоря, в закрытом ящике установили еще один низкочастотный драйвер, только без магнита и звуковой катушки.

Пассивный излучатель может увеличить эффективную поверхность диффузора вдвое, или даже в трое, если в одной колонке они установлены парой

Конструкция получила название «пассивный излучатель» (Passive radiator), которое сплошь и рядом не слишком грамотно переводят с английского как «пассивный радиатор». В отличие от трубы сабвуфера, пассивный диффузор занимает куда меньше пространства в корпусе, не так критичен к расположению, и к тому же он, как и воздух внутри закрытого ящика, демпфирует ведущий драйвер, сглаживая его АЧХ.

Пассивный излучатель сабвуфера REL S/5. Основной драйвер направлен в пол

Еще один плюс — с увеличением площади излучающей поверхности для достижения нужного звукового давления требуется меньшая амплитуда колебаний, а значит, снижаются последствия нелинейной работы подвеса. Колеблются оба диффузора синфазно, а резонансная частота свободной мембраны настраивается точной регулировкой массы — к ней попросту подклеивают грузик.

Пассивный излучатель

Плюсы: Компактность корпуса при впечатляющей глубине басов. Отсутствие фазоинверторных призвуков.

Минусы: Увеличение массы излучающих элементов приводит к росту переходных искажений и замедлению импульсного отклика.

Выход из лабиринта

Акустика, вооруженная фазоинверторами и пассивными излучателями, воспроизводит глубокие басы благодаря резонаторам, работающим при посредничестве воздуха внутри АС. Однако кто сказал, что объем колонки не может играть роль низкочастотного излучателя сам по себе? Конечно может, и соответствующая конструкция называется акустический лабиринт. По сути, она представляет собой волновод, протяженностью в половину или четверть длины волны, на которой планируется добиться резонанса системы. Иными словами конструкция настраивается по нижней границе частотного диапазона АС. Конечно использовать волновод полной длины волны было бы еще эффективнее, но тогда для частоты, скажем, 30 Гц, его пришлось бы делать 11-метровым.

Акустический лабиринт — любимая конструкция акустиков-самодельщиков. Но при желании корпуса самой хитрой формы можно заказать и в готовом виде

Чтобы в колонке разумных размеров уместить даже вдвое более компактную конструкцию, в корпусе устанавливают перегородки, формирующие максимально компактный изогнутый волновод, поперечным сечением примерно равным площади диффузора.

От фазоинвертора лабиринт отличается в первую очередь менее «резонансным» (то есть не акцентированным на определенной частоте) звучанием. Относительно низкая скорость и ламинарность движения воздуха в широком волноводе препятствует возникновению турбулентности, порождающей, как мы помним, нежелательные призвуки. Кроме того, в данном случае драйвер свободен от компрессии, повышающей резонансную частоту, ведь его тыловое излучение не встречает практически никаких препятствий.

Схема для расчета корпуса на dbdynamixaudio.com

Бытует мнение, что акустические лабиринты создают меньше проблем со стоячими волнами в комнате. Однако при малейших просчетах в разработке или изготовлении, стоячие волны могут возникнуть в самом волноводе, который, в отличие от фазоинвертора, имеет куда более сложную структуру резонансов.

Вообще надо сказать, что грамотный расчет и точная настройка акустического лабиринта — процессы весьма непростые и трудоемкие. Именно по этой причине данный тип корпуса встречается нечасто, и только в АС очень серьезного ценового уровня.

Акустический лабиринт

Плюсы: Не только хорошая отдача, но и высокая тональная точность басов.

Минусы: Нешуточные размеры, очень высокая сложность (читай - стоимость) создания правильно работающей конструкции.

Эй, на пароме!

Рупор — самый древний и, пожалуй, самый провокационный тип акустического оформления. Выглядит круто, если не сказать эпатажно, звучит ярко, а временами… В старых фильмах герои иногда кричат друг другу что-то в рупор, и характерная окраска такого звука давно стала мемом и в музыкальном, и в киношном мире.

Avantgarde Acoustics Trio с низкочастотным рупорным массивом Basshorn XD высотой 2,25 м

Конечно от жестяной воронки с ручкой теперешняя акустика ушла очень далеко, но принцип работы все тот же — рупор повышает сопротивление воздушной среды для лучшего согласования с относительно высоким механическим сопротивлением подвижной системы динамика. Таким образом, повышается его КПД, а заодно и формируется четкая направленность излучения. В отличие от всех описанных ранее конструкций, рупор чаще всего используется в высокочастотных звеньях АС. Причина проста — его сечение увеличивается по экспоненте, и чем ниже воспроизводимая частота, тем большим должен быть размер выходного отверстия — уже на 60 Гц потребуется раструб диаметром 1,8 м. Понятно, что такие монструозные конструкции больше подходят для стадионных концертов, где их действительно периодически можно встретить.

Главный козырь адептов рупорного воспроизведения заключается в том, что акустическое усиление позволяет при заданной звуковой отдаче уменьшить ход мембраны, а значит, поднять чувствительность и улучшить музыкальное разрешение. Да-да, снова кивок обладателям ламповых однотактников. К тому же при грамотном расчете раструбы могут играть роль акустических фильтров, круто отсекая звук за пределами своей полосы и позволяя ограничиться самыми простыми, а потому вносящими минимальные искажения электрическими кросоверами, а иногда и вообще обойтись без них.

Системы Realhorns — особая акустика для особых случаев

Скептики же не устают напоминать о характерной рупорной окраске, особенно заметной на вокале, и придающей ему характерную гнусавость. Побороть данную неприятность действительно нелегко, хотя судя по тому, как играют лучшие образцы High-End-рупоров, вполне реально.

Рупор

Плюсы: Высокий акустический КПД, а значит, отличная чувствительность и неплохое музыкальное разрешение системы.

Минусы: Характерная трудноустранимая окраска звука, недетские размеры средне- и тем более низкочастотных конструкций.

Круги на воде

Именно такой аналогией проще всего описать характер излучения контрапертурных акустических систем, впервые разработанных в Советском Союзе в 80-х годах прошлого века. Принцип работы нетривиален: пара одинаковых динамиков смонтирована так, что их диффузоры расположены друг напротив друга в горизонтальной плоскости и двигаются симметрично, то сжимая, то разжимая воздушную прослойку. В результате создаются кольцевые воздушные волны, равномерно расходящиеся во все стороны. Причем характеристики этих волн в процессе их распространения искажаются минимально, а их энергия затухает медленно — пропорционально расстоянию, а не его квадрату, как в случае обычных АС.

Duevel Sirius сочетает элементы рупорной и контрапертурной конструкций

Помимо дальнобойности и круговой направленности, контрапертурные системы интересны на удивление широкой вертикальной дисперсией (порядка 30 градусов против стандартных 4-8 гр.), а также отсутствием доплеровского эффекта. Для динамиков он проявляется в биениях сигнала, вызванных постоянным изменением расстояния от источника звука до слушателя из-за колебаний диффузора. Правда, реальная слышимость данных искажений до сих пор вызывает много споров.

Взаимное проникновение концентрических звуковых полей правой и левой колонок создают весьма обширную и равномерную зону объемного восприятия, то есть по сути вопрос точного позиционирования АС относительно слушателя становится не актуален.

Итальяно-российская контрапертурная акустика Bolzano Villetri

Обратная сторона медали — большая опасность ранних отражений этих волн от стен и мебели, о вредоносности которых я подробно рассказывал в статье «Азы акустики для чайников: как правильно расставить колонки в комнате».

Характерная особенность контрапертуры в том, что звук, приходящий к слушателю фактически со всех сторон, хотя и создает впечатляющий эффект присутствия, не может в полной мере передать информацию о звуковой сцене. Отсюда рассказы слушателей об ощущении летающего по комнате рояля и прочих чудесах виртуальных пространств.

Контрапертура

Плюсы: Широкая зона эффектного объемного восприятия, натуралистичность тембров благодаря нетривиальному использованию волновых акустических эффектов.

Минусы: Акустическое пространство заметно отличается от звуковой сцены, задуманной при записи фонограммы.

И другие...

Если вы думаете, что на этом список вариантов оформления колонок исчерпывается, значит вы сильно недооцениваете конструкторский энтузиазм электроакустиков. Я описал только наиболее ходовые решения, оставив за кадром близкую родственницу лабиринта — трансмиссионную линию, полосовой резонатор, корпус с панелью акустического сопротивления, нагрузочные трубы...

Nautilus от Bowers & Wilkins — одна из самых необычных, дорогих и авторитетных в плане звучания акустических систем. Тип оформления — нагрузочные трубы

Подобная экзотика встречается довольно редко, но иногда она материализуется в конструкции с действительно уникальным звучанием. А иногда и нет. Главное не забывать, что шедевры, как и посредственности, встречаются во всех оформлениях, что бы ни говорили идеологи того или иного бренда.

stereo.ru

это... Акустическая система. Профессиональная акустика

Сегодня трудно представить себе человека, который бы не слушал музыку или не смотрел телевизор. Звук как таковой мы слышим из специальных устройств (колонок), которые иногда называют акустическими системами. Их типов сегодня можно насчитать достаточно много. Говоря об основных характеристиках таких устройств, для начала нужно разобраться, что же такое акустика. Это понятие может относиться не только к устройствам воспроизведения, поскольку имеет более широкое толкование.

Акустика (звук, акустическая система, устройство воспроизведения): это что такое в общем понимании?

Изначально термин «акустика», пока еще не были изобретены колонки и усилители, позиционировался исключительно как набор определенных параметров, описывавших распространение, отражение или поглощение звука в определенном пространстве (открытое, закрытое) и среде.

Иными словами, с точки зрения физики акустика – это, грубо говоря, поведение звука в определенных условиях.

Сегодня применительно к компьютерным системам или устройствам воспроизведения акустикой принято называть системы усиления и воспроизведения.

Основные типы акустических систем

Что касается классификации таких систем, ни одна из них не может работать самостоятельно. Подключение акустики производится к предварительному или основному усилителю, который и транслирует сигнал на динамики либо непосредственно, либо через дополнительные устройства (эквалайзеры, кроссоверы и т.д.).

По принципам работы и подключения практически все акустические системы можно разделить на два больших класса – активные и пассивные. Пассивные колонки подключаются непосредственно к усилителю, за счет которого производится передача звукового сигнала с задействованием его собственной электрической схемы. Активная акустика – это система, подключаемая не только к усилителю, но и к электросети. Это необходимо для работы встроенных предусилителей (например, расположенных в сабвуфере).

В подклассах можно встретить такие типы систем, как:

  • напольные;
  • потолочные;
  • центрально-сигнальные;
  • фазоинверторные;
  • биполярные;
  • системы акустических лабиринтов;
  • колонки со встроенными излучателями пассивного типа;
  • контрапертурные и т. д.

Отдельно выделяют колонки открытого и закрытого типа.

Домашняя акустика

Если говорить о том, какие системы используются в домашних условиях, в большинстве своем это либо пассивная акустика с прямым подключением к усилителям, либо активные системы домашних кинотеатров, подключаемые к DVD- или Blu-ray- проигрывателям.

В качестве самого простого примера пассивных колонок (громкоговорителей), можно привести, если кто помнит, модели Radiotehnika серии S, которые просто соединялись с усилителем без использования электропитания. Они были способны выдавать только стереосигнал или что-то вроде псевдо-квадро при подключении не двух, а четырех колонок.

Активные системы для домашних кинотеатров в основном используют стандарты Dolby Surround и Digital Audio, и могут различаться по количеству дополнительных колонок (5+1, 7+1). В таком обозначении единица соответствует сабвуферу, а первые цифры обозначают количество колонок (несколько фронтальных, задних и боковых).

Но все домашние системы могут воспроизводить звук в диапазоне от 16-20 Гц до 18-20 кГц (реже – до 22-24 кГц, что человеческое ухо уже практически не воспринимает), и состоят они из трех типов динамиков – низко-, средне- и высокочастотных с разными вариациями по количеству. На каждый динамик (диффузор), подается сигнал строго определенной частоты (иногда для разделения основного сигнала применяются кроссоверы), что и позволяет добиться такого звучания, при котором частоты не смешиваются (не накладываются друг на друга).

Компьютерная акустика

Компьютерные акустические системы в чем-то очень сильно напоминают домашние. Но и в этом случае могут применяться как самые простые колонки с ограниченными звуковыми диапазонами, так и целые профессиональные системы вроде тех, которые используются в домашних кинотеатрах.

Правда, тут все зависит еще и от звуковой карты. На воспроизведение она влияет первостепенным образом.

Профессиональные системы

А вот профессиональная акустика – это уже серьезно. В основном она используется в студиях звукозаписи или на концертах. Сюда можно отнести студийные или концертные мониторы, гитарные «комбики» и целые звуковые порталы. В большинстве своем управление такими системами осуществляется либо на самих устройствах (практически все они оснащены предусилителями), либо через центральный микшерный пульт, на котором производится сведение инструментов по громкости или панораме, не говоря об использовании дополнительных эффектов для обработки первичного сигнала.

В плане концертных порталов грандами можно назвать компании Marshall и JBL. Но вот, что интересно: эти производители до сих предпочитают использовать ламповые усилители вместо полупроводниковых, поскольку они обладают большей мощностью и обеспечивают более теплый аналоговый звук.

Если вспомнить самый большой в истории рока концерт 1991 года Monsters Of Rock in Moscow, который проходил на летном поле в Тушино, выставленная мощность звуковых порталов в сумме составляла порядка 600 кВт. Выступления групп E.S.T., The Black Crowes, Pantera, Metallica и AC/DC можно было слышать даже в метро за три километра от поля. Можете себе представить, что творилось перед сценой.

Что касается мониторов, любой исполнитель скажет вам, что они служат для того, чтобы на сцене слышать общее звучание без задержек. Основной портал находится впереди, а исполнитель воспринимает только отраженный сигнал, из-за чего может просто не попасть в такт.

А вот гитаристам с появлением «комбиков» повезло значительно больше. Дело в том, что профессиональная акустика этого типа позволяет самостоятельно настроить качество звука или дополнительные эффекты при подключенных гитарных процессорах или «примочках», и именно такой сигнал будет транслироваться на основные усилители с выводом на портал или на вход записывающего студийного устройства. И практически все мировые лидеры в производстве гитарных инструментов выпускают собственные модели.

Итог

Таким образом, акустика – это не только описание физических процессов или просто колонки. В случае с системами воспроизведения и обработки звука можно говорить о сложных комплексах, которые и обеспечивают не только звучание, но и дают возможность управления всеми процессами, включая обработку или усиление звукового сигнала.

fb.ru

Как оценить акустическую систему: 15 референсных треков | Домашние аудиосистемы | Блог

Как проверить акустику перед покупкой? Как выявить недостатки уже имеющейся акустической системы в помещении? Как правильно должен звучать бас или высокие частоты? На чем определить чистоту звучания, динамический диапазон и детализацию? Список референсных треков поможет оценить возможности аудиосистемы перед покупкой или выявить недостатки старых колонок, чтобы сделать правильный апгрейд. Также бывает полезно узнать, как должен звучать качественный микс в разных жанрах музыки. Список составлен с помощью студийных мониторов в подготовленном помещении, учитывает основные параметры акустики и включает в себя множество стилей — от классики и джаза до дабстепа и джента.

При прослушивании важно попытаться мысленно выделить отдельный элемент трека — бас, высокие частоты, динамика и т. п. — и сосредоточиться на нем. Если недостаток баса может быть очевиден, то недостаток детализации или динамики будет выражен в смазанных акцентах, неразборчивых партиях, небольших искажениях и других нюансах. Однако, как хорошее, так и плохое звучание складывается из множества не самых значимых на первый взгляд деталей.

Бас

Red Hot Chili Peppers — Dark Necessities

Бас в рок-музыке лежит в диапазоне 50–200 Гц. Роковая песня с насыщенной басовой составляющей даст хорошее представление о том, как стереосистема играет этот диапазон. Найти подходящий трек легче легкого — нужно взять группу, сердцем которой будет басист. Red Hot Chili Peppers — идеальный пример: фанк-рок с качающим и очень динамичным басом будет непростым испытанием для дешевых колонок: потеряются детали и призвуки в слэпе, ноты получатся смазанными и бубнящими. На хорошей акустике трек не будет гудеть, басовые ноты будут разборчивыми, словно ими выстреливают.

Что слушать: слэп в куплете должен быть четким и собранным, ноты в припеве должны хорошо читаться, бочка не должна налезать на бас.

Noisia — Mantra

Трио из Нидерландов делает танцевальную электронику на стыке драм энд бейса и дабстепа. В современной музыке, рассчитанной на огромные залы, напичканные сабами и колонками, сложно понять, где заканчивается звукорежиссура и начинается математика. Басовая составляющая в этих треках невероятно плотная и охватывает диапазон от саб-баса до нижней середины. На больших колонках с сабвуфером можно в буквальном смысле почувствовать форму баса, поскольку волна будет проходить через все тело (именно поэтому такая музыка идеальна для танцпола). Акустика с раздутым басом будет бубнить и захлебываться, а колонки с завалом в этой области не отыграют большей части низкочастотной красоты.

Что слушать: бас и саб-бас должны хорошо читаться и не мешать друг другу, низкочастотный спектр должен быть монолитным, на дропах акустика не должна гудеть.

Bassotronics — Bass I Love You

Трек от проекта, чью любовь к низким частотам нетрудно угадать, без хорошего сабвуфера вызовет лишь недоумение. Если при прослушивании на домашней акустике не слышно главной фишки этого трека — низкого саб-баса, значит, она не воспроизводит частоты ниже 50 Гц. Для сравнения, можно посмотреть на ютубе, что этот трек делает с сабвуферами.

Что слушать: саб-бас должен присутствовать, быть четким и собранным.

Высокие частоты

Vivaldi — Four Seasons

Солирующая скрипка на фоне струнного оркестра и клавесина в хорошем концертном зале и в отличной записи позволит услышать именно те самые «шелковые» высокие. Естественная реверберация помещения и живое исполнение создает потрясающе натуральное звучание. Контрастные переходы от едва слышных нот до фортиссимо позволят также оценить динамические способности системы. Акустика без провалов и горбов на высоких частотах отыграет все нотки музыкально и не будет резать уши.

Что слушать: высокие ноты должны хорошо читаться и не резать ухо, можно услышать шуршание смычка, движение пальцев по струне и другие призвуки.

 
Dead Can Dance — Host of Seraphim

Женский вокал в сочетании с тревожными скрипками позволят оценить верхнюю середину и высокие частоты. Потрясающий по силе голос Лизы Джерард из австралийского коллектива Dead can Dance на хорошей акустике пробирает до мурашек и остается прозрачным даже на высокой громкости.

Что слушать: вибрато на высоких нотах и хвосты реверберации между фразами должны быть хорошо слышны, тембр голоса должен быть натуральным, скрипка и вокал не должны мешать друг другу или резать слух.

Judas Priest — Painkiller

Одна из частых проблем с высокими частотами на бытовой акустике — они слишком задраны, чтобы компенсировать никудышную детализацию плохих динамиков и сделать звучание ближе к слушателю. Выявить проблему поможет трек, насыщенный резкими высокими. Painkiller британцев Judas Priest стал иконическим хэви-метал треком и подходит идеально: визжащий вокал, лязгающие гитары, шелестящие тарелки, вопящие соло — плохие колонки превратят все это в пилораму с большим количеством искажений, а на хорошей акустике трек можно крутить часами без звона в ушах.

Что слушать: гитары, особенно флажолеты и соло, высокие ноты вокала, тарелки — все должно звучать музыкально, а не давить на уши.

Средние частоты

Bach: Cello Suite No. 1 in G Major, Prelude

В целом, почти любой трек сгодится для проверки средних частот, ведь именно в них сосредоточены основные тембры большинства инструментов. Однако нет ничего лучше для оценки средних частот, чем виолончель. Диапазон этого инструмента лежит от 80 Гц до 5 кГц, а основной тембр сосредоточен в нижней середине, в районе 150–300 Гц. Таким образом, на акустике с проблемами в этой области виолончель будет звучать излишне гнусаво, «коробочно», либо без тела.

Что слушать: тембр должен быть натуральным и богатым обертонами, можно услышать движение пальцев и смычка.

Black Sabbath — War Pigs

Альбомы из эпохи старого рока позволяют отлично оценить нижнюю середину и общий баланс системы. Живая, дышащая и очень натуральная электрогитара, записанная во времена, когда гитарному тембру уделяли внимания не меньше, чем вокалу. На некачественной акустике она будет вялой, скомканной и безжизненной, зато хорошая аудиосистема словно поставит группу прямо перед слушателем — настолько натуральным будет звучание.

Что слушать: гитары и вокал должны звучать натурально, соло должно хорошо читаться, рабочий барабан должен создавать ощутимое пространство, бас не должен давить на гитару.

Пространство

Hans Zimmer — Mountains

Саундтреки к крупнобюджетным блокбастерам хорошо подходят для тестирования аудиосистем. Они всегда отлично записаны и сведены, ведь их предназначение — звучать громко и без искажений. Поэтому их не лимитируют «в блин» как коммерческие записи, оставляя большой динамический диапазон, чтобы уши зрителей не уставали. Наконец, они должны создавать фильму звуковое пространство, поэтому для саунтреков так подходит симфонический оркестр, записываемый в больших залах — большая реверберация создает необходимый объем. Саундтрек к Интерстеллару в этом плане — один из лучших вариантов, здесь в звуке выражено пространство космоса: очень широкое звучание, насыщенное всеми частотами. Оркестр, орган и хор, большая реверберация — все это создает масштаб, который воспроизведет лишь акустика, умеющая работать с пространством.

Что слушать: реверберацию, особенно на высоких звуках и на оркестровых дропах.

Howard Shore — The Bridge of Khazad Dum

Оскароносный саундтрек эпичного фэнтези обязан быть масштабным, и он таким является. Хор, диссонирующие скрипки, валторны и тяжеловесная перкуссия создают огромное пространство. Стоит отметить, что хор при записи саундтрека располагался на балконе над оркестром — за счет этого он находится как бы выше него, что создает еще больше объема. Все это, чтобы передать гигантский масштаб подземного царства гномов Мории. Дешевая акустика сделает звук плоским и невзрачным.

Что слушать: пространство вокруг скрипок, меди и литавр, хвосты реверберации от согласных при вступлении хора, объем чистого вокала в конце.

Tool — Chocolate Chip Trip

В безумное эмбиентное полотно с огромной реверберацией вклинивается барабанное соло, создавая пространство в пространстве. Этот трек с последнего альбома американских прог-рокеров Tool делает из головы слушателя воздушный шарик, наполненный звуками. Правильная аудиосистема позволит услышать разные слои реверберации и даже акустику комнаты, в которой записаны барабаны, при этом слои не будут смешиваться.

Что слушать: реверберацию семплов и барабанов, хвосты от рабочего барабана и томов, объем на тарелках.

Детализация

Daft Punk — Get Lucky

Трек Get Lucky отмечен Грэмми как «Лучшая запись 2014» — в этой номинации учитываются именно технические качества песни. Что не удивительно — альбом Random Access Memories французских электронщиков Daft Punk записан преимущественно с помощью живых инструментов и представляет из себя диско-фанк, который располагает к углубленному прослушиванию и не надоедает даже после сотого повтора. Отличный трек, чтобы проверить общую разрешающую способность аудиосистемы по всему спектру.

Что слушать: должен быть слышен каждый мелкий удар по тарелкам и каждый штрих по гитаре, а бас будет выстреливать низкими нотами.

Liquid Tension Experiment — Paradigm Shift

Супергруппа Liquid Tension Experiment из музыкантов-виртуозов выдает более 9000 нот в минуту, и для аудиосистемы это станет настоящим челленджем вида «отыграй их все». Песня Paradigm Shift из первого альбома, сведенного Кевином Ширли (работавшем с Aerosmith, Dream Theater, Iron Maiden, Led Zeppelin и другими легендами), представляет собой квинтэссенцию отлично записанного и сыгранного инструментального прог-метала. Музыка очень насыщенная, с большим количеством деталей, плотной ритм-секцией, кучей запилов на гитаре и клавишах — не каждая аудиосистема осилит. При этом отсутствие вокала позволяет сконцентрироваться на тембрах инструментов.

Что слушать: гитарный и клавишный шред должен хорошо читаться, в сбивках на барабанах должен быть слышен каждый удар, бас и панч от гитарных риффов должны быть четкими и собранными.

Meshuggah — Clockworks

Настоящим краш-тестом для аудиосистемы будут экстремальные жанры металла. В качестве примера можно рассмотреть номинированный на Грэмми трек от гуру джента Meshuggah: тяжеленные восьмиструнные гитары, абсолютно безумный барабанщик, невероятная техника и проработка деталей. Музыка крайне насыщена низкими частотами — гитары отстроены на октаву ниже стандартного строя, в сочетании с жирнейшим басом они производят объемный и собранный панч. Непрерывные акценты по рабочему барабану создают объем. На системе с плохой детализацией все это превратится в неразборчивую кашу.

Что слушать: акценты по рабочему барабану должны хорошо читаться, панч от гитар не должен размываться, инструменты должны хорошо читаться даже на быстрых кусках, бас не должен мешать бочке.

Динамический диапазон

Holst: The Planets, 'Mars'

Когда речь заходит о динамическом диапазоне (разнице и количестве градаций между самым тихим и самым громким звучанием), чемпионами являются рояль и симфонический оркестр. И если выбирать из произведений для оркестра, то очевидным примером будет сюита «Планеты». От едва уловимых нот до поражающей масштабностью звуковой картины — это произведение Густава Холста 100-летней давности, воспроизведенная большим оркестром и качественно записанная современной аппаратурой, может устроить нешуточное испытание любой аудиосистеме. Та, что не умеет играть переходы от тихих до очень громких нот, просто захлебнется на экспрессивных кусках.

Что слушать: разница между тихими и громкими фрагментами должна быть существенной, при этом не нужно будет крутить ручку громкости, на самых эпичных частях партии всех инструментов должны хорошо читаться, не должно быть искажений, можно услышать лажу трубача на 4:16.

Liszt's Hungarian Rhapsody No. 2

Рояль — инструмент, занимающий весь частотный диапазон и умеющий звучать по-интимному тихо и по-грандиозному громко. Чтобы убедиться в этом, достаточно взять композицию одного из величайших пианистов когда-либо живших, талантливого исполнителя, хороший инструмент, большой зал, и хорошо все это записать.

Что слушать: все ноты должны быть хорошо слышны — от самых тихих до самых громких, быстрые партии не должны сливаться в кашу, громкие высокие ноты и грузные басовые пассажи должны звучать чисто, можно услышать дыхание исполнителя и призвуки удара пальцев по клавишам.

Duke Ellington, Juan Tizol, Irving Mills — Caravan (Whiplash OST)

Караван — это джазовый стандарт, то есть тема, которая используется джазовым оркестром для импровизации вокруг нее. Караван был написан в 1930-х и стал одной самых известных джазовых композиций всех времен. Именно она оказалась в центре сюжета фильма «Одержимость», изданный саундтрек к которому содержит превосходно звучащую версию знаменитой композиции. Суматошный темп, уйма инструментов, занимающих весь частотный диапазон, витиеватая композиция с импровизациями — совсем не легкий материал для аудиосистемы. Качественные динамики позволят услышать, как живо и натурально звучат все инструменты, как они создают панч и работают вместе, а также в деталях рассмотреть каждый удар чумового барабанного соло.

Что слушать: тембры должны быть натуральными, сбивки по рабочему барабану не должны сливаться в единый звук, тихие удары по тарелкам должны хорошо читаться, инструменты не должны мешать друг другу, громкие ноты на трубах должны звучать чисто.

Контрольная акустика, использовавшаяся для подготовки материала:

●        Yamaha MSP7.

●        Behringer B2031A.

●        Line6 StageSource L3t c родными сабами.

●        Noname компьютерные колонки в качестве shit-control.

club.dns-shop.ru

Акустика – это наука о звуке. Основные направления современной акустики :: SYL.ru

Звук – это феномен, волновавший человеческие умы с глубокой древности. Фактически мир разнообразных звуков возник на Земле задолго до появления на ней человеческих существ. Первые звуки раздавались ещё во время зарождения нашей планеты. Они были вызваны мощнейшими ударами, колебаниями материи и бурлением раскалённого вещества.

Звук в природной среде

Когда на планете появились первые животные, у них со временем возникла острая потребность получать как можно больше информации об окружающей действительности. А поскольку звук является одним из главных носителей информации, то у представителей фауны стали происходить эволюционные изменения головного мозга, которые постепенно привели к образованию органов слуха.

Теперь первобытные животные могли получать посредством улавливания звуковых колебаний необходимую информацию об опасности, часто исходящей от невидимых взору объектов. Позднее живые существа научились использовать звуки для других целей. Сфера применения аудиоинформации росла в процессе эволюции самих животных. Звуковые сигналы стали служить средством примитивного общения между ними. Звуками они стали предупреждать друг друга об опасности, также он служил зовом к объединению для существ со стадными инстинктами.

Человек – повелитель звуков

Но лишь человеку удалось научиться в полной мере использовать звук в своих целях. В один прекрасный момент люди столкнулись с необходимостью передачи знаний друг другу и из поколения в поколение. Этим целям человек подчинил многообразие звуков, которые научился со временем издавать и воспринимать. Из этого множества звуков впоследствии возникла речь. Звук стал также наполнением досуга. Люди открыли для себя благозвучность свиста спускаемой тетивы лука, энергичность ритмичных ударов деревянных предметов друг о друга. Так возникли первые, самые простые музыкальные инструменты, а значит, и само музыкальное искусство.

Однако человеческое общение и музыка – не единственные звуки, которые появились на Земле с возникновением людей. Звуками сопровождались и многочисленные трудовые процессы: изготовление различных предметов из камня и дерева. А с появлением цивилизации, с изобретением колеса люди в первый раз столкнулись с проблемой громкого шума. Известно, что уже в древнем мире стук колёс о дороги, вымощенные камнем, нередко становился причиной плохого сна у жителей придорожных домов. В борьбе с этим шумом было изобретено первое средство шумоподавления: на мостовую настилалась солома.

Нарастающая проблема шума

Когда человечество познало пользу железа, проблема шума начала приобретать глобальные масштабы. Изобретя порох, человек создал тем самым источник звука такой мощности, которая достаточна для причинения заметного ущерба его собственному слуховому аппарату. В эпоху промышленной революции среди таких негативных побочных явлений, как загрязнение окружающей среды, истощение природных ресурсов, не последнее место занимает проблема промышленного шума высокой громкости.

Анекдот из жизни

Тем не менее даже в настоящее время не все производители промышленной техники уделяют хоть какое-то внимание данному вопросу. Руководство далеко не всех заводов и фабрик озабочено сохранением здорового слуха у своих подчинённых.

Иногда приходится слышать рассказы, подобные этому. Главный инженер одного из крупных предприятий промышленности распорядился установить в наиболее шумных цехах микрофоны, подсоединённые к громкоговорителям, расположенным снаружи зданий. По его мнению, таким образом микрофоны будут высасывать часть шума наружу. Конечно, при всей комичности данной истории она заставляет задуматься о причинах такой безграмотности в вопросах, касающихся шумоподавления и шумоизоляции. А причина у этого единственная – в учебных заведениях высшего, средне-профессионального и средне-специального уровня образования лишь в последние десятилетия стали вводить специальные курсы по акустике.

Наука о звуке

Первые попытки познания природы звука были предприняты ещё Пифагором, который изучал колебания струны. После Пифагора в течение долгих веков эта область не вызывала никакого интереса у исследователей. Конечно, целый ряд учёных древности занимался построением собственных акустических теорий, но эти научные изыскания не основывались на математических расчётах, а были больше похожи на разрозненные философские рассуждения.

И лишь по прошествии более чем тысячи лет Галилей положил начало новой науке о звуке – акустике. Виднейшими первопроходцами в этой сфере были Рэлей и Гельмгольц. Они создали в девятнадцатом веке теоретическую основу современной акустики. Герман Гельмгольц в основном знаменит своим изучением свойств резонаторов, а Релей стал нобелевским лауреатом благодаря своей фундаментальной работе по теории звука.

Основные направления современной акустики

Многочисленные научные труды по исследованию природы шума и вопросам шумоподавления и шумоизоляции были опубликованы некоторое время спустя. Первые работы в этой области касались в основном шумов, производимых авиационной техникой и наземных транспортом. Но со временем границы этих исследований значительно расширились. На данный момент большинство промышленно-развитых стран имеют свои научно-исследовательские институты, занимающиеся разработкой решения данных проблем.

На сегодняшний день наиболее известны следующие разделы акустики: общая, геометрическая, архитектурная, строительная, психологическая, музыкальная, биологическая, электрическая, авиационная, транспортная, медицинская, ультразвуковая, квантовая, речевая, цифровая. В следующих главах будут рассмотрены некоторые из перечисленных разделов науки о звуке.

Общие положения

Прежде всего, следует дать определение науке, о которой идёт речь в данной статье. Акустика – это область знания о природе звука. Данная наука изучает такие явления, как возникновение, распространение, ощущение звука и различные эффекты, производимые звуком на органы слуха. Как и все прочие науки, акустика имеет свой понятийный аппарат.

Акустика – это наука, считающаяся одной из отраслей физической науки. Вместе с тем она также является междисциплинарной отраслью, то есть имеет тесные связи с другими областями знаний. Наиболее отчётливо прослеживается взаимодействие акустики с механикой, архитектурой, теорией музыки, психологией, электроникой, математикой. Важнейшие формулы акустики касаются свойств распространения звуковых волн в условиях упругой среды: уравнения плоской и стоячей волн, формулы расчёта скорости волн.

Применение в музыке

Музыкальная акустика – отрасль, исследующая музыкальные звуки с точки зрения физики. Данная отрасль тоже является междисциплинарной. В научных трудах по музыкальной акустике активно используются достижения математической науки, музыкальной теории и психологии. Основные понятия этой науки: звуковысотность, динамические и тембральные оттенки используемых в музыке звуков. Данный раздел акустики преимущественно направлен на исследование ощущений, возникающих при восприятии звуков человеком, а также особенностей музыкального интонирования (воспроизведения звуков определённой высоты). Одной из обширнейших тем исследования музыкальной акустики является тема музыкальных инструментов.

Применение на практике

Учёные, занимающиеся теорией музыки, применяли результаты исследований музыкальной акустики для построения концепций музыки на базе естественных наук. Физики и психологи занимались вопросами музыкального восприятия. Отечественные учёные, трудившиеся на этом поприще, работали как над разработкой теоретической базы (Н. Гарбузов известен своей теорией о зонах музыкального восприятия), так и над применением достижений на практике (Л. Термен, А. Володин, Е. Мурзин занимались конструированием электромузыкальных инструментов).

В последние годы всё чаще стали появляться междисциплинарные научные работы, в которых комплексно рассматривается особенность акустики зданий, относящихся к различным архитектурным стилям и эпохам. Данные, полученные при исследованиях в данной сфере, используются при построении методик развития музыкального слуха и техник настройки музыкальных инструментов. Следовательно, можно сделать вывод, что музыкальная акустика – отрасль науки, которая не потеряла своей актуальности на сегодняшний день.

Ультразвук

Далеко не все звуки могут быть восприняты человеческими органами слуха. Ультразвуковая акустика – раздел акустики, изучающий звуковые колебания с диапазоном от двадцати кГц. Звуки такой частоты находятся за гранью человеческого восприятия. Ультразвук подразделяется на три вида: низкочастотный, среднечастотный, высокочастотный. Каждый из видов имеет свою специфику воспроизведения и практического применения. Ультразвуки могут быть созданы не только искусственно. Они нередко встречаются и в живой природе. Так, шум, издаваемый ветром, частично состоит из ультразвука. Также такие звуки воспроизводятся некоторыми животными и улавливаются их органами слуха. Всем известно, что летучая мышь является одним из таких существ.

Ультразвуковая акустика – это отрасль акустики, которая нашла практическое применение в медицине, при различных научных опытах и исследованиях, в военной промышленности. В частности, в начале двадцатого века в России было изобретено устройство для обнаружения подводных айсбергов. Работа этого устройства основывалась на генерации и улавливании ультразвуковых волн. Из данного примера видно, что ультразвуковая акустика – это наука, достижения которой используются на практике уже более ста лет.

www.syl.ru


Смотрите также